
Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.1

CHAPTER 9:

SEARCHING AND SORTING

“Simplicity of life, even the barest, is not a misery,
but the very foundation of refinement”

William Morris (1834–96)

Introduction

his section starts off with a chapter which introduces no new data structures. It
discusses two programming techniques. While this might initially seem strange, most

textbooks on data structures devote a chapter or two to each of these concepts. Firstly,
because they constitute major tasks which most computer programs must deal with,
Secondly, they illustrate the major trade-off to be considered when implementing linear
versus non-linear data structures, namely, speed of access vs. maintenance.

An understanding of the tradeoffs involved also helps to illustrate why we need to develop
additional data structures, especially linked lists and binary trees. These structures help
alleviate the problems encountered when trying to quickly access data without extensive
maintenance. Additionally, this chapter will serve an introduction to non-contiguous
storage of data, and how we can use this approach in an efficient manner.

T

 ��								

��������������������������������								

C
H

 1

 How do nos. & chars differ?
 How do we convert into
binary?

 What are Octal and Hex?
Why?

����������������������������What is an Integer on the
PC?

 What if I need large
integers?

������������������������What is One’s Complement?

What is Two’s Complement ?

How are real numbers stored?
How are real nos. described?
What if I need large nos?
Data types are there in C?
Are there other data types?
What questions should I know?

C
H

 2

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.2

Sequential Searches

 sequential search is the simplest way of traversing a list in order to find an element
on it, and a technique which we have previously seen. Consider a variation on our c

program 4.3., in which we searched for a value in an array. In program 9.1, we will get a
value to search for from the user, and then attempt to find in the array.

Let’s take a look at the array set up (from the declaration: myarray[8] =
{6,9,2,4,1,12,3,10};)

Figure 9.1.
myarray offset: 0 1 2 3 4 5 6 7

myarray value:

Suppose that the user wishes to see if the value 4 is stored somewhere in the array. We
begin by starting with the first value in the array (myarray[0] = 6), and see if the value
contained at that array position is value 4. If it is, we stop. If it isn’t, we continue searching
(by incrementing the contents of location offset: i until we find it: i++;):

A

 #include <stdio.h>
 #include <stdlib.h>

 void main()
 { int i, num=1, myarray[8] = {6,9,2,4,1,12,3,10}; // initialize the array
 char s[10]; // for our gets function
 while (num != 0) // Should we quit?
 { i = 0;
 printf("Enter a (whole) number between 1 and 12 (0 to quit): ");
 num = atoi(gets(s)); // get the number to search
 if (num != 0) // Should we quit?
 { while((myarray[i] != num) && (i<8)) i++; // Check the array
 if (i < 8) // Element in the array?
 printf("\nThe number %d was found in position %d\n",num,i);
 else // Element NOT in the array
 printf("\nThe number %d is not in the array\n",num);
 }
 }
}

C/C++ Code 9.1

6 9 2 4 1 12 3 10

?���� What is happening here ???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.3

Figure 9.2.

 Offset Value
 Search #4: i = 3 myarray[3] = 4

 Search #3: i = 2 myarray[2] = 2

 Search #2: i = 1 myarray[1] = 9

 Search #1: i = 0 myarray[0] = 6

Obviously, that depends on the value the user enters (and how many elements are in an
array). Table 9.1. shows the number of searches required for existing values (i.e., values in
the array):

That means that the minimum number of checks
needed is 1 (if the user enters the value 6), and the
maximum number of comparisons needed is 8 (if
the user enters the value 10). For any value not on
the list (e.g., the value 5), we must go though the
entire list and that we need 8 searches (or 9,
depending on how we define a search). Therefore,
the average (n) number of comparisons required
is:

 Max. Checks + Min. Checks + 1 8 + 1
n = = = 4.5

2 2

where n is the number of elements in an array. In this formula, one (1) is added to the
numerator to account for elements not on the list.

Regardless of list length, the average (as well as maximum) number of checks required is
completely dependent upon the number of elements in the list. Consider the different list
lengths given in Table 9.2.:

 Table 9.1.

Search Value Searches Required
6 1
9 2
2 3
4 4
1 5

12 6
3 7

10 8

6 9 2 4 1 12 3 10

?���� How many searches are required???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.4

Table 9.2.

Length Comparisons Required Length Comparisons Required
10 (n+1)/2 = 11/2 = 5.5 5,000 (n+1)/2 = 5,001/2 = 2,500.5
25 (n+1)/2 = 25/2 = 12.5 10,000 (n+1)/2 = 1,0001/2 = 5,000.5

100 (n+1)/2 = 101/2 = 55.5 100,000 (n+1)/2 = 100,001/2 = 50,000.5
500 (n+1)/2 = 501/2 = 255.5 500,000 (n+1)/2 = 500,001/2 = 250,000.5

1,000 (n+1)/2 = 1,001/2 = 500.5 1,000,000 (n+1)/2 = 1,00,001/2 = 500,000.5

If the list is not sorted, no. We could just as easily search from the end of the list
(continuing to the beginning), or apply some other search algorithm, but since the value
being sought could be anywhere on the list (or not on it at all), these strategies would be
futile.

Now, if the list were sorted or ordered in some known fashion ….

Binary Searches

f we know that a list is ordered (whether in ascending or descending order), we do not
have to search every element on that list. Let’s take a look at the same array, but this
time as a sorted (ordered) list. Suppose we had made our declaration (in C code 9.1) as:

int myarray[8] = {1, 2, 3. 4, 6, 9, 10, 12};

which is in order. The array would appear as:

myarray offset: 0 1 2 3 4 5 6 7

myarray value:

Let’s assume that we were once again looking for the value 4 in the list. We could
arbitrarily select a position (based on array offset) in the list and compare the value found
there with the value we are looking for. If, for example, we decide to look at offset 2
(myarray[2]), we would obviously find the value 3 stored there.

Because we know that the array is sorted (in ascending order), we therefore know that if the
value 4 does exist in the list, can’t be at offsets 0 (zero) or 1 (one); that saves us two

I

1 2 3 4 6 9 10 12

?���� Is there anyway to reduce the number of comparisons required???

?���� What does that tell us???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.5

comparisons. Because we already checked offset 2, the value must be in either offsets 3 ..
7, or not on the list at all.

Since we are arbitrarily checking locations, let’s chose offset 5 (myarray[5]), which we
already know contains the value 9. This time, because the value we are looking for (4) is
smaller than the value 9, we can eliminate offsets 6 and 7 (as well as offset 5, which we
just checked) from consideration. If the value 4 is on the list, it must be in positions 3 or 4.

Notice that after just two comparisons, we have eliminated six elements from
consideration, and reduced our list of candidates to just two.

The way that we are searching (arbitrarily), it doesn’t matter. If we decide to check offset 3,
we will find it; if we don’t, we will find it on the next try.

No, arbitrarily selecting a position doesn’t make sense. We could, arbitrarily, select the first
element in the list (myarry[0]) or the last element in the list (myarray[7]). In either of these
cases, we are only eliminating one element from consideration (either the first or the last).
We would like to eliminate as many elements from consideration as possible, or, in other
words, reduce our list of potential candidates as quickly as possible. This implies that we
should split our list in half each time, or perform a binary search.

This time, let’s look for the value 6 (which we know is in position myarray[4]). The list
contains 8 elements, with offsets ranging from 0 to 7, so let’s split it in two and begin
searching from there:

Figure 9.3.

Search 1: The middle of the list is (first + last)/2 = (0 + 7)/ 2 = 3.5 = 3

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

Since 4 (the value contained at location myarray[3]) is less than 6 (our search value), we
can eliminate offsets 0 through 3 from consideration (leaving offsets 4 through 7 to be
checked).

1 2 3 4 6 9 10 12

?���� Which position do we check next???

?���� Do we always arbitrarily choose an offset position???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.6

At this point in time, we know that the element we are looking for can not be in positions
(offsets) 1, 2, or three. The first place it could be at is offset 4. Therefore:

Figure 9.4.

Search 2: The middle of the list is (first + last)/2 = (4 + 7)/ 2 = 5.5 = 5

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

Since 9 (the value contained at location myarray[3]) is greater than 6 (our search value),
we can eliminate offsets 5 through 7 from consideration (leaving only offset 4 to be
checked. Therefore:

Figure 9.5.

Search 3: The middle of the list is (first + last)/2 = (4 + 4)/ 2 = 4 = 4

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

And we have found the value we were looking for in three comparisons (as opposed to 5 if
we were performing a sequential search).

Not necessarily.

Remember, we could have been searching for an element which was not on the list.
Suppose we were looking for the value 5 (not on the list), we would follow the exact same
procedure (try following the steps above) only to find that in search 3, the value stored in
myarray[4] was not 5. Suppose we were looking for the value 11 (also not on the list). Our
search steps would be:

Figure 9.6.

Search 1: The middle of the list is (first + last)/2 = (0 + 7)/ 2 = 3.5 = 3

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

1 2 3 4 6 9 10 12

1 2 3 4 6 9 10 12

1 2 3 4 6 9 10 12

?���� Why did we have to make the last search? We only had one element left in our
list, so it had to be there!!!

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.7

Since 4 (the value contained at location myarray[3]) is less than 11 (our search value), we
can eliminate offsets 0 through 3 from consideration (leaving offsets 4 through 7 to be
checked).At this point in time, we know that the element we are looking for can not be in
positions (offsets) 1, 2, or three. The first place it could be at is offset 4. Therefore:

Figure 9.7.

Search 2: The middle of the list is (first + last)/2 = (4 + 7)/ 2 = 5.5 = 5

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

Since 9 (the value contained at location myarray[5]) is less than 11 (our search value), we
can eliminate offsets 4 and 5 from consideration (leaving offsets 6 and 7 to be checked).
Therefore:

Figure 9.8.

Search 3: The middle of the list is (first + last)/2 = (6 + 7)/ 2 = 6.5 = 6

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

Since 10 (the value contained at location myarray[6]) is less than 11 (our search value), we
can eliminate offset 6 from consideration (leaving only offset 7 to be checked). Therefore:

Figure 9.9.

Search 4: The middle of the list is (first + last)/2 = (7 + 7)/ 2 = 7 = 7

myarray value:

myarray offset: 0 1 2 3 4 5 6 7

According to our algorithm, IF the value 11 exists on the list, it must be at some offset less
than 7.

1 2 3 4 6 9 10 12

1 2 3 4 6 9 10 12

1 2 3 4 6 9 10 12

?���� Now what???

?���� But, that can’t be !!!

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.8

That is true, but we don’t necessarily know that. However, given that we know that if the
value exists on the list the first available offset is 7, and (as we determined above), and the
last available offset where is 6, then we know that the element can’t be on the list since the
first offset is now greater than the last offset.

The minimum number of comparisons is (of course) only 1 (we could always get lucky and
find it on the first try). The maximum number of comparisons (for n > 30)1 needed in a
binary search is (we will avoid the derivations):

 log2 n Formula 9.1.

and, on average, the number of comparisons needed:

 (log2n) – 1 (for n > 30) Formula 9.2.
Where n = list length

That is not as easy to answer as it might appear. The code for a Binary search is
considerably more complex than the code for a sequential search, so it takes longer to
execute. A general rule of thumb, however, is somewhere around 30 to 50 elements.

Consider the following comparisons (Table 9.3.):
Table 9.3.

Number of
Elements

Maximum
Sequential

n+1

Average
Sequential
(n + 1)/2

Maximum
Binary
log2n

Average
Binary

log2n - 1
10 11 5.5 4 2.9
50 51 25.5 6 4.6

100 101 55.5 7 5.8
1,000 1,001 500.5 10 9.0

10,000 10,000 5,000.5 14 12.3
100,000 100,001 50,000.5 17 15.6

1,000,000 1,000,001 500,000.5 20 18.9
10,000,000 10,000,001 50,000,000.5 24 22.3

1 Discrpencies with the table below are due the small number of elements (8) in the array

?���� What about the minimum, maximum, and average number of comparisons
required using a binary search???

?���� When is a binary search better than a sequential search???

?����
How do the two approaches compare, aside from the programming

considerations???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.9

Notice that as the number of elements to be searched increases, the number of comparisons
necessary in a binary search is exponentially less than the number of comparisons
necessary for a sequential search.

Let’s perform an interactive binary search on our (sorted) array where the user gets to
choose a numeric value to look for:

 #include <stdio.h> // Std. I/O
 #include <stdlib.h> // For atoi
 void main()
 { int value = 1, myarray[8] = {1,2,3,4,6,9,10,12}, // The sorted array
 first, last, mid, found; // first, last, middle
 char s[10]; // For our gets
 while (value != 0) // Continue until Quit
 { printf("\nEnter a (whole) number between 1 and 12 (0 to quit): "); // Prompt the user
 value = atoi(gets(s)); // Get search Value
 if (value != 0) // If not Quit
 { first = 0; // first is initially 0
 last = 8 - 1; // last is initially 7
 mid = (first + last)/2; // middle will be 3
 found = 1; // value is not yet found
 while(found != 0)
 { printf("value = %d, middle = %d, last = %d, first = %d\n", // Show starting values
 value, mid, last, first);
 if (myarray[mid] == value) // Was the value found?
 { printf("The number %d was found in position %d\n", // The print the info
 value, mid);
 found = 0; } // set the found flag
 else // if not found
 if (first >= last) // NOT in the array??
 { printf("The value %d is not in the array\n", value); // Then indicate
 found = 0; } // and set the flag
 else
 { if (value > myarray[mid]) // Is it in the top half?
 first = ++mid; // set the first value
 else // Is it in the bottom half?
 last = --mid; // reset the last value
 mid = (first + last)/2; // set new middle value
 } }}}}

C/C++ Code 9.2

?���� What about the c code necessary to perform a binary search???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.10

Let’s follow the variable values first if the user enters the numeric value 3 (a legal value)
and then 7 (a value not on the list). Note that whatever integer the user enters, it will be
stored in location (variable) value.

value = 3 Table 9.10.

Pas
s

first

last

mid

myarray
[mid]

value ==
myarray [mid]?

value >
myarray
[mid]?

value < myarray
[mid]?

last >=
first ?

0 0 7 3 4 NO NO YES: last = 2 NO
1 0 2 1 2 NO YES: first = 2 NO NO
2 2 2 2 3 YES: found = 1

Now, if the user were to enter the value 7:

value = 7 Table 9.11.

Pas
s

first

last

mid

myarray
[mid]

value ==
myarray [mid]?

value >
myarray
[mid]?

value < myarray
[mid]?

last >=
first ?

0 0 7 3 4 NO YES: first = 5 NO NO
1 5 7 6 10 NO NO YES: last = 5 NO
2 5 5 5 6 NO YES: first = 7 NO YES

The search ends because the contents of location last are less than the contents of location
first (i.e., 5 < 7).

In terms of what the program would print out if we entered various values, we would find:

Enter a (whole) number between 1 and 12 (0 to quit): 6
value = 6, middle = 3, last = 7, first = 0
value = 6, middle = 5, last = 7, first = 4
value = 6, middle = 4, last = 4, first = 4
The number 6 was found in position 4

Enter a (whole) number between 1 and 12 (0 to quit): 5
value = 5, middle = 3, last = 7, first = 0
value = 5, middle = 5, last = 7, first = 4
value = 5, middle = 4, last = 4, first = 4
The value 5 is not in the array

Enter a (whole) number between 1 and 12 (0 to quit): 11
value = 11, middle = 3, last = 7, first = 0
value = 11, middle = 5, last = 7, first = 4
value = 11, middle = 6, last = 7, first = 6
value = 11, middle = 7, last = 7, first = 7
The value 11 is not in the array

Enter a (whole) number between 1 and 12 (0 to quit): 0

Program 9.2. Output

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.11

If we were to enter all the values between 1 and 13, we would find:

 Table 9.12.

Search Value No. Comparisons Search Value No.
Comparisons 1 3 8 3

2 2 9 2
3 3 10 3
4 1 11 3
5 3 12 3
6 3 13 3
7 3

Notice that for any value greater than 12, the number of comparisons necessary is 3. This
corresponds to our formula (9.1.)

Maximum Number Comparisons = log2 n = log2 8 = 3.00 = 3

Basically, yes. However, there are some alternatives. One which we can discuss here is the
concept of an index (much like the index of a textbook). The original data is left unsorted,
but we construct an alternative list (the index) which is ordered and points to the unsorted
list. We can then use a binary search on the index to find elements in the unsorted list.

Let’s consider a new example. Consider the following list of names:

This list is obviously not in any order (alphabetically or chron-
ologically). Let’s assume that we had initialized the array as:

char presidents[10][20] = {…};

Remember: this array consists of 10 elements with each
element containing 20 characters (a two dimensional array).

If we wished to print the array alphabetically, we would first
have to print out the string found at offset 6 (“Adams, J.”),
then the string found at offset 7 (“Eisenhower, D.D.”), then at
offset 2 (“Fillmore, M.”), and so forth, until we print out the
last name on the list (“Washington, G.”) which is found at

offset 1.

 Table 9.13.

Offset Name
0 Lincoln, A.
1 Washington, G.
2 Fillmore, M.
3 Nixon, R.
4 Van Buren, M.
5 Kennedy, J.F.
6 Adams, J.
7 Eisenhower, D.D.
8 Reagan, R.
9 Johnson, L.B.

?����
Does that mean that we must Always sort a list if we want to perform a binary

search???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.12

If we were to construct another array, say: int index[10]; we could store the offsets of
ordered list of presidents in it. The relationship between the two lists might appear as:

 Figure 9.10.

index presidents
Offset Order Offset Name

0 6 0 Lincoln, A.
1 7 1 Washington, G.
2 2 2 Fillmore, M.
3 9 3 Nixon, R.
4 5 4 Van Buren, M.
5 0 5 Kennedy, J.F.
6 3 6 Adams, J.
7 8 7 Eisenhower, D.D.
8 4 8 Reagan, R.
9 1 9 Johnson, L.B.

Notice that while we have not changed the order of our presidents array, we could quickly
find any name on the list by performing a binary search on our index array. Let’s suppose
we wished to find the name “Reagan, R.” on our list. We could essentially proceed as
before:

Figure 9.11.

Search 1: The middle of the list is (first + last)/2 = (0 + 9)/ 2 = 4.5 = 4

presname value:

offset: 0 1 2 3 4 5 6 7 8 9

which points to: “Kennedy, J.F.”

Since “Kennedy, J.F.” is alphabetically less than “Reagan, R.”, we know that if “Reagan,
R.” exists on the list, it must be in positions 5, 6, 7, 8, or 9 (in array index) which point to
names greater than “Kennedy, J.F.” in array presidents. Since the first place it could be is in
position 5, we reset our first position to 5. The next search would appear as (Figure 9.12):

6 7 2 9 5 0 3 8 4 1

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.13

Figure 9.12.

Search 2: The middle of the list is (first + last)/2 = (5 + 9)/ 2 = 14 = 7

presname value:

offset: 0 1 2 3 4 5 6 7 8 9

which points to: “Reagan, R.”

Notice that we are done with our search after only two comparisons (instead of the 8 it
would have taken with a sequential search).

In this case, it might not be. But we will review this approach a little later, and we will find
that can offer significant benefits.

The code is very similar to the code we saw for a simple binary search. Consider the code
in program 9.3. Basically, the only differences are:

1. Our variables first, last, and mid are applied to array index (instead of being directly

applied to array presidents).

2. When we compare the value we are looking for (in this program, variable search) with
the name string in the array (presidents), instead of using the subscript (offset) mid, we
use the offset contained in the array prenames. That is, instead of issuing the
command2:

if (strcmp(search, presidents[mid]) == 0)

we MUST issue the command:

if (strcmp(search, presidents[index[mid]]) == 0)

where we check the offset of the presidents array via the contents of our index array.

2 Notice that since we are dealing with strings, we must use the strcmp function

6 7 2 9 5 0 3 8 4 1

?����
Using an index does not seem life it is much of an improvement over simply

sorting the list of names!!!

?���� What about the c code necessary to perform a binary Search using an index???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.14

Let’s follow our variable values if we were to look for the string “Washington, G.” on the
list (Table 9.14):

 Table 9.14.

Pa
ss

fir
st

la
st

m
id

in
de

x[
m

id
]

president
[index[mid]]

search3 ==
president

[index[mid]]?

search >
president

[index[mid]]?

search <
president

[index[mid]]?

0 0 9 4 5 “Kennedy, J.F. NO YES: first = 5 NO
1 5 9 7 8 “Reagan, R.” NO YES: first = 8 NO
2 8 9 8 4 “Van Buren, M.” NO YES: first = 9 NO
1 5 9 7 8 “Reagan, R.” NO YES: first = 8 NO
3 9 9 9 1 “Washington, G.” YES: found = 1

We leave it to you to determine what would happen if we were searching for a name that
was not on the list.

3 To save space, we will not use the strcmp function name in the table

 #include <stdio.h> // Std. I/O
 #include <string.h> // for strcmp, strlen
 void main()
 { int first, last, mid, found, // our offset pionters
 index[10] = {6, 7, 2, 9, 5, 0, 3, 8, 4, 1}; // our index
 char presidents[10][20] = {“Lincoln, A.”, “Washington, G.”, “Fillmore, M.”,
 “Nixon, R.”, “Van Buren, M.”, Kennedy, J.F.”, “Adams, J.”,
 “Eisenhower, D.D.”, “Reagan, R.”, Johnson, L.B.”},
 search[10] = “XXX”; // Search Name
 while (strlen(search) > 0) // Continue until Quit
 { printf("\nEnter a name (CR to quit): "); // Prompt the user
 if (strlen(search) > 0) // entering CR => len = 0
 { first = 0; last = 9; mid = (first + last)/2; found = 1; // set staring values
 while(found != 0)
 { printf("name = %s, middle = %d, last = %d, first = %d\n", search, mid, last, first);
 if (strcmp(search, presidents[index[mid]]) == 0) // Was the name found?
 { printf("The name %s was found in position %d\n", search, index[mid]);
 found = 0; } // set the found flag
 else // if not found
 if (first >= last) // NOT in the array??
 { printf("The name %s is not in the array\n", search); // Then indicate
 found = 0; } // and set the flag
 else
 { if (strcmp(search, presidents[index[mid]]) > 0) // Is it in the top half?
 first = ++mid; // set the first value
 else // Is it in the bottom half?
 last = --mid; // reset the last value
 mid = (first + last)/2; } // set new middle value
 } } } }

C program 9.3

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.15

Tradeoffs Between Sorted and Unsorted Lists

s we implied, there are trade-offs between sorted and unsorted lists. If we don’t really
care about finding an individual element in a list, or about displaying elements in a

specified order, then unsorted lists might be preferred. Certainly, for many transaction
processing systems, which are processed in order of receipt and in batch, such an approach
is preferred. Updating and maintenance are simple and not programatically complex or
expensive.

If being able to locate specific elements, or records in a database, and being able to locate
them quickly, is a concern, then more advanced searching procedures must be applied. The
approach that we discussed previously, a binary search, provides the speed necessary (by
the way, it is also the fastest search method). However, as we have seen, if we wish to
perform a binary search, then we must first sort the list. Even if we apply the index
approach discussed above, we must first sort the index.

While sorted list provide us with searching advantages, there are some associated
problems:

• Initial Sorting of the elements can be time consuming (as we shall see in the next

section). This is especially true if we are trying to sort extremely large data sets (which
would necessarily involve external sorting (mentioned in the following section)
procedures).

• Maintaining the sorted list requires some effort. Each time a new element is added,

it must be inserted in the correct position and the other elements repositioned
accordingly. Each time an element is deleted from the list, the remaining elements must
be rearranged.

• The programs needed to find an element are more complex and require more

execution time than do sequential search programs. Compare the code needed for a
binary search versus a sequential search.

• A true binary search requires all the elements (or index of the elements) to be

stored in as an array in contiguous locations in memory. For large arrays, this may
be not be feasible (e.g., assume an array of structs containing 100,000 elements, where
each struct requires 10,000 bytes of storage. We would need 1,000,000,000 (1 billion)
bytes of storage).

This last constraint, namely that we use contiguous storage in RAM is one which we shall
loosen in the subsequent chapters. However, even when we do, the other concerns will
remain, and in many cases, will be intensified.

A

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.16

Sorting

orting algorithms are a topic of great concern to computer scientists, who are keenly
interested in maximizing efficiency. We will discuss them very briefly, and consider

only two of the most common approaches.

There are two general classes of sorts: Internal and External. External sorts are those which
are performed outside of RAM on the disk. External sorts are much slower than internal
sorts, primarily because the can require extensive reading and writing to and from the
external storage device, which is the slowest operation a computer performs. However, in
cases where we are dealing with large data sets (too large to fit into RAM), we have no
choice. In COBOL, a language designed to deal with large data sets, there are built-in
external sorting procedures.

Internal sorts are those where the entire list is placed in memory and sorted. In fact, all
sorting (whether internal or external) is performed by the CPU, and thus data must first be
placed in RAM. However, with external sorts, only a portion of data will be placed in
memory at any one time. We will consider only internal sorts in this section.

There are three major type of internal sorts:

1. Exchange Sorts (e.g., bubble sort). In these techniques, a single (usually; multiple lists

may be employed), we scan the list for elements which are not in the correct order,
exchanging their positions as found.

2. Selection Sorts. In this approach, there are generally two (or more) lists (Selection

sorts with exchange use only one list). The basic methodology is to select the largest
and smallest elements in each pass and move them into their correct position.

3. Insertion Sorts. This approach also can employ one or two lists, although two are

more common. Each item from original list is inserted into the correct position in the
new list as they are examined.

Once again, since our intent is essentially to illustrate some of the issues involved in
sorting, we will consider only the two most common exchange sorts: Bubble Sorts,
perhaps the most common and certainly the simplest off all sorts, and the Quick Sort,
generally the fastest sort, especially with longer lists. The quick sort will be shown only in
graphical format at this time since it involves a programming technique (recursion) which
will be cover in a later chapter.

S

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.17

Bubble Sorts

ubble sorts are perhaps the simplest of all sorting (internal/exchange) techniques, and
for (relatively) small lists, are more than adequate. The basic concept behind bubble

sorts is to continue examining the list of data and letting the largest (or smallest) elements
bubble to the top (or bottom) of the list with each pass.

Consider our previous (unsorted) list, myarray:

Offset: 0 1 2 3 4 5 6 7 Figure 9.13.

where: Smallest Element: Largest element

It is obvious that this element (12), presently located in position myarray[5], should be in
the position (myarray[7]). Further, the second largest element (10 in myarray[7]) should be
moved to myarray[6], and so on. The smallest element (1), presently located in position
myarray[4], should be in position myarray[0]. In fact, we know that the sorted array shouls
appear as:
Offset: 0 1 2 3 4 5 6 7 Figure 9.14.

 Smallest Largest

This logic forms the logic for our algorithm (we will modify it a little later on):

1. Starting from the bottom (or top), compare each element in the array with the adjacent

element in the array.
2. If the elements are in correct order, swap them.
3. Continue comparing the elements in the array until the largest element is at the top (or

the smallest element is at the bottom).
4. Reduce the length of the list to be considered by 1 (either ignore the largest element in

the list or the smallest element in the list).
5. If the length of the list is 1 (one), stop. Otherwise, go to step 1 and repeat the pro-

cedure.

Let’s see how the algorithm actually works (see Figure 9.15.). Starting at the bottom of the
list, we compare the 1st element with 2nd, the 2nd with the 3rd, an so forth, until we have
compared the 7th with the 8th. IF any comparison shows that the elements are out of order,
we swap them. IF they are in order, we continue.

B

6 9 2 4 1 12 3 10

1 2 3 4 6 9 10 12

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.18

Figure 9.15
Pass 1:
Comparison 1:

 The Elements are in-order: Do Not swap

Comparison 2:

 The Elements are out of order: Swap

Comparison 3:

 The Elements are out of order: Swap

Comparison 4:

 Out of order: Swap

Comparison 5:

 In order: Do Not Swap

Comparison 6:

 Out of order: Swap

Comparison 7:

 Out of order: Swap

At the end of the 1st pass, our list would appear as:

1. The largest element on the list has ‘bubbled-up’ to the top of the list.
2. We had to make a total of 7 comparisons, given that there are 8 elements on the list.

In fact, when we make pair-wise comparisons, for a list of n elements (in this case, 8),
we need to make n-1 total comparisons.

3. Some of the elements have moved closer to their ‘true’ positions (although we can’t
always be sure of this).

6 9 2 4 1 12 3 10

6 9 2 4 1 12 3 10

6 2 9 4 1 12 3 10

6 2 4 9 1 12 3 10

6 2 4 1 9 12 3 10

6 2 4 1 9 12 3 10

6 2 4 1 9 3 12 10

6 2 4 1 9 3 10 12

?���� What do we know???

?���� Are we done???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.19

Obviously not. BUT, since we know that the largest element is at the end of the list, for our
next pass, we need not compare it with the element beneath it. In other words, we need
compare the only the elements in offsets 0 through 6 (7 elements).

Pass 2: Figure 9.16.

Comparison 8:

 The Elements are out of order: Swap

Comparison 9:

 The Elements are out of order: Swap

Comparison 10:

 The Elements are out of order: Swap

Comparison 11:

 Elements in order: Do Not Swap

Comparison 12:

 Out of order: Swap

Comparison 13:

 In order: Do Not Swap

Notice that this time, we only made 6 comparisons. Also, we know with certainty that the
two largest elements occupy the last two positions, so we need not check them in the next
pass. Continuing:

Pass 3: Figure 9.17.

Comparison 14:

 The Elements are in order: Do Not Swap

Comparison 15:

 The Elements are out of order: Swap

Comparison 16:

 The Elements are in order: Do Not Swap

Comparison 17:

 Elements out of order: Swap

Comparison 18:

 In order: Do Not Swap

6 2 4 1 9 3 10 12

2 6 4 1 9 3 10 12

2 4 6 1 9 3 10 12

2 4 1 6 9 3 10 12

2 4 1 6 9 3 10 12

2 4 1 6 3 9 10 12

2 4 1 6 3 9 10 12

2 4 1 6 3 9 10 12

2 1 4 6 3 9 10 12

2 1 4 6 3 9 10 12

2 1 4 3 6 9 10 12

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.20

And we know for sure that the top three elements are in place.
Pass 4: Figure 9.18.

Comparison 19:

 The Elements are out of order: Swap

Comparison 20:

 The Elements are in order: Do Not Swap

Comparison 21:

 The Elements are out of order: Swap

Comparison 22:

 Elements in order: Do Not Swap
And the list (after Comparison 22) is in order.

No. Not at all. Consider the worst case scenario (when the list is in reverse order):
Figure 9.19.

Comp: Pass 1: Comp:
 Pass 3:

 Pass 4:

 Pass 2:

 Pass 5:

And the list will be sorted after we swap Pass 6:
2 & 1 in pass 7, comparison 28

 Pass 7:

2 1 4 3 6 9 10 12

1 2 4 3 6 9 10 12

1 2 4 3 6 9 10 12

1 2 3 4 6 9 10 12

1 12 10 9 6 4 3 2 1

2 10 12 9 6 4 3 2 1

3 10 9 12 6 4 3 2 1

4 10 9 6 12 4 3 2 1

5 10 9 6 4 12 3 2 1

6 10 9 6 4 3 12 2 1

7 10 9 6 4 3 2 12 1

8 10 9 6 4 3 2 1 12

9 9 10 6 4 3 2 1 12

10 9 6 10 4 3 2 1 12

11 9 6 4 10 3 2 1 12

12 9 6 4 3 10 2 1 12

13 9 6 4 3 2 10 1 12

14 9 6 4 3 2 1 10 12

15 6 9 4 3 2 1 10 12

16 6 4 9 3 2 1 10 12

17 6 4 3 9 2 1 10 12

18 6 4 3 2 9 1 10 12

19 6 4 3 2 1 9 10 12

20 4 6 3 2 1 9 10 12

21 4 3 6 2 1 9 10 12

22 4 3 2 6 1 9 10 12

23 4 3 2 1 6 9 10 12

24 3 4 2 1 6 9 10 12

25 3 2 4 1 6 9 10 12

26 3 2 1 4 6 9 10 12

27 2 3 1 4 6 9 10 12

28 2 1 3 4 6 9 10 12

?���� Do we know that a list of 8 elements will be sorted after 22 comparisons???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.21

• For an array of size n, we need n-1 passes (i.e., for an array of 8 elements, we need 7
passes) to be completely sure that we have sorted the list

• For the first pass, we need n-1 comparisons; each subsequent pass needs 1 less compar-
ison than the previous one. In our list, we needed:

In other words, we need a total of :

Σ[Σ[Σ[Σ[(n-1)+(n-2)+...+1]

= 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 Comparisons

Or: (n2 - n)/2 = (82 – 8)/2 = (64 – 8)/2 = 56/2 =
28

It can be. Consider the following list lengths:

 Table 9.16.

Elements

Max. Passes
(n – 1)

Max Compares
(n2 – n)/2

Elements

Max. Passes
(n – 1)

Max Compares
(n2 – n)/2

10 9 45 100,000 99,999 4,999,950,000
100 99 4,950 250,000 249,999 31,249,875,000

1,000 999 999,500 500,000 499,999 124,999,750,000
5,000 4,999 12,497,500 1,000,000 999,999 499,999,500,000

10,000 9,999 49,995,000 5,000,000 4,999.999 12,499,997,500,000

For a company like American Express, with 300 million customers, the (maximum) number
of comparisons is 4.9999985 * 1016 (= 44,999,999,850,000,000)

Yes and no. The list is indeed sorted after pass 4, but we don’t know it. We know that a list
is sorted IF we make the maximum (n-1) passes OR we make a pass AND we make no
swaps. If we put a flag in our program which checked to see if we made a swap, we could
have stopped AFTER pass 5 (Notice: we DID make a swap in pass 4, but not in pass 5). It
does mean that we must make one extra pass (i.e., even if the list were sorted to begin with,
we would have to make one pass through it), but if often saves us from having to make the
maximum number of passes.

 Table 9.15.

Pass Comparison
s

Pass Comparison
s

1 7 5 3
2 6 6 2
3 5 7 1
4 4

?���� What do we know???

?���� Is that a lot???

?����
But, in our original example, the list was sorted after 4 passes and 22

Comparisons (see figure 9.18) . Couldn’t we stop there???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.22

When we examined our bubble sort, we noticed that not only did the larger (and certainly
largest) numbers ‘bubble’ up, but in doing so, the smaller numbers were pushed down. We
can also have a two-way bubble sort: in one pass we ‘bubble’ the larger numbers up, and in
the subsequent pass, we ‘bubble’ the smaller numbers down.

Consider our original (unsorted) list:
Figure 9.20.

Comp: Pass 1 (Bubble up): Comp: Pass 3 (Bubble up):

 Pass 4 (Bubble down):

 Pass 2 (Bubble down):

 And the list will be sorted when we swap
 Elements after comparison 21.

 NOTE: we still MUST make one more
 Pass to know that the list is
 sorted

Notice that after comparison 13, the smallest is known to be at the bottom of the list

1 6 9 2 4 1 12 3 10

2 6 9 2 4 1 12 3 10

3 6 2 9 4 1 12 3 10

4 6 2 4 9 1 12 3 10

5 6 2 4 1 9 12 3 10

6 6 2 4 1 9 12 3 10

7 6 2 4 1 9 3 12 10

14 1 6 2 4 3 9 10 12

15 1 2 6 4 3 9 10 12

16 1 2 4 6 3 9 10 12

17 1 2 4 3 6 9 10 12

18 1 2 4 3 6 9 10 12

19 1 2 4 3 6 9 10 12

20 1 2 4 3 6 9 10 12

21 1 2 4 3 6 9 10 12

22 1 2 3 4 6 9 10 12
8 6 2 4 1 9 3 10 12

9 6 2 4 1 9 3 10 12

10 6 2 4 1 3 9 10 12

11 6 2 4 1 3 9 10 12

12 6 2 1 4 3 9 10 12

13 6 1 2 4 3 9 10 12

?���� Is there any way to improve on the bubble sort???

?���� How does this work???

?
This does not seem like any savings. With a simple ‘bubble’ up, the list was

sorted after the 22nd comparison.

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.23

In this case, there was essentially no savings. If we were looking at the worst case scenario
(when the list is in reverse order), there will be absolutely no savings. However, most of the
time, the total number of comparisons will be less.

The code is provided in Program 9.4. The program initially ‘bubbles’ up, then ‘bubbles’
down, then repeats the process. It includes the flag sorted (an integer variable): if no swaps
are made, the value is set to 0, otherwise the value is set to 1. If no stops are made, we can
stop. The output which the program produces follows the source code.

 #include <stdio.h>
 void printarray(int a[], int head); // prototype
 int pass = 0, compare = 0, swaps = 0; // global vars
 void main()
 { int i, temp, iarray[8] = {6,9,2,4,1,12,3,10}, // initialize
 int sorted = 1, bottom = 0, top = 7; // Sorted Flag
 printarray(iarray,0); // print original
 while ((top > bottom) && (sorted == 1)) // check end
 { sorted = 0; // assume in order
 pass++; // increment counter
 for (i = bottom; i < top; i++) // move largest up
 { compare++; // increment counter
 if (iarray[i] > iarray[i+1]) // ?? out of order
 { sorted = 1; swaps++; // array NOT in orde
 temp = iarray[i]; // temp. storage
 iarray[i] = iarray[i+1]; // swap
 iarray[i+1] = temp; }
 printarray(iarray,1); } // print results
 top--; // decrement top
 if (sorted == 1) // array in order ??
 { sorted = 0; pass++; // reset sorted flag
 for (i = top; i > bottom; i--) // move smallest down
 { compare++; // increment counter
 if (iarray[i] < iarray[i-1]) // ?? out of order
 { sorted = 1; // array NOT in order
 swaps++; // increment counter
 temp = iarray[i]; // temp. storage
 iarray[i] = iarray[i-1]; // swap
 iarray[i-1] = temp; }
 printarray(iarray,1); } // print results
 bottom++; } } } // inc. array position
 void printarray(int a[], int head) // print array
 { int i; // index
 if (head == 0) printf(“Original Series: “); // check header
 else printf("Pass %d, Compares %d, Swaps %d: ",pass,compare,swaps);
 for (i = 0; i < 10; i++) printf(“%3d”, a[i]); // Print element
 printf("\n"); // add newline
 }

C program 9.4.

?���� What about the c code necessary to perform the bubble sort above???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.24

The output from the above program would appear as:

Which corresponds to our illustration, except that the swaps are made before the comparison
number is printed (e.g., the list is sorted after comparison 21).

No, not at all. It may be adequate for smaller lists, but for larger lists, it is quite slow. The
Quick sort technique is generally considered the fasted internal sort technique, especially for
larger lists.

?���� Is the bubble sort the quickest search technique???

 Original Series: 6 9 2 4 1 12 3 10
 Pass 1, Compares 1, Swaps 0: 6 9 2 4 1 12 3 10
 Pass 1, Compares 2, Swaps 1: 6 2 9 4 1 12 3 10
 Pass 1, Compares 3, Swaps 2: 6 2 4 9 1 12 3 10
 Pass 1, Compares 4, Swaps 3: 6 2 4 1 9 12 3 10
 Pass 1, Compares 5, Swaps 3: 6 2 4 1 9 12 3 10
 Pass 1, Compares 6, Swaps 4: 6 2 4 1 9 3 12 10
 Pass 1, Compares 7, Swaps 5: 6 2 4 1 9 3 10 12
 Pass 2, Compares 8, Swaps 5: 6 2 4 1 9 3 10 12
 Pass 2, Compares 9, Swaps 6: 6 2 4 1 3 9 10 12
 Pass 2, Compares 10, Swaps 6: 6 2 4 1 3 9 10 12
 Pass 2, Compares 11, Swaps 7: 6 2 1 4 3 9 10 12
 Pass 2, Compares 12, Swaps 8: 6 1 2 4 3 9 10 12
 Pass 2, Compares 13, Swaps 9: 1 6 2 4 3 9 10 12
 Pass 3, Compares 14, Swaps 10: 1 2 6 4 3 9 10 12
 Pass 3, Compares 15, Swaps 11: 1 2 4 6 3 9 10 12
 Pass 3, Compares 16, Swaps 12: 1 2 4 3 6 9 10 12
 Pass 3, Compares 17, Swaps 12: 1 2 4 3 6 9 10 12
 Pass 3, Compares 18, Swaps 12: 1 2 4 3 6 9 10 12
 Pass 4, Compares 19, Swaps 12: 1 2 4 3 6 9 10 12
 Pass 4, Compares 20, Swaps 12: 1 2 4 3 6 9 10 12
 Pass 4, Compares 21, Swaps 13: 1 2 3 4 6 9 10 12
 Pass 4, Compares 22, Swaps 13: 1 2 3 4 6 9 10 12
 Pass 5, Compares 23, Swaps 13: 1 2 3 4 6 9 10 12
 Pass 5, Compares 24, Swaps 13: 1 2 3 4 6 9 10 12
 Pass 5, Compares 25, Swaps 13: 1 2 3 4 6 9 10 12

C Program 9.4. Output

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.25

Quick Sorts

e noticed that the smaller the list, the faster the sort. For example, we saw in Table
9.16. that if a list consisted of 100 elements, the maximum number of comparisons

((n2 – n)/2) was 4,950. If the list was 10 times larger (1,000 elements), the maximum number
of comparisons needed was 499,500 (a 100 fold increase). In other words, as the list length
increases, the number of comparisons needed increases exponentially. The idea behind a
quick sort is to break the list up into smaller lists, sort the smaller lists, and then merge the
lists together.

Consider the following list consisting of 10 elements:

Figure 9.21.
The first step is to pick a
pivot element which will al-
low us to break the list in half. Ideally, we would like to pick the element which contains the
median value, but we do not know that in advance. For our example let’s choose the median
element on the list (i.e., the 5th element in the list, or the element in offset 4, or the numeric
value 4).

The next step is to partition the list. By this we mean that we start comparing elements on
the list with our pivot element (the value 4): If the number is greater, we will move it to the
right of our pivot element. If the number is less than 4, we will move it to the left of the pivot
element.

We start by comparing the leftmost element with the rightmost element, swapping as
necessary:

Figure 9.22.
The value 7 (in offset 0) is NOT
In the correct position (it should
be to the right of the pivot element). Now we need to find an element which is to the right of
the pivot element BUT should be to the left of the pivot element. When we do, we can swap
the two misplaced elements.

Figure 9.23. Since 5 is greater than 4, it is
positioned correctly (i.e., to
the right of 4) we want to
leave it. But since 1 is not (it
should be to the left of the
pivot), we will swap it with 7
(relative to 4, both will be in
the correct position).

W

 7 2 6 9 4 3 8 10 1 5

7 2 6 9 4 3 8 10 1 5

7 2 6 9 4 3 8 10 1 5

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.26

After the swap, the array appears as: Figure 9.24.

Continuing as before, we can see that the 2 (in offset 1) is correctly positioned, but the 6 (in
offset 2) is not.

To the right of the pivot element, the 10 (offset 7) and the 8 (offset 6) are greater than the
pivot element, and should remain where they are. The 3 (offset 5) is not in the correct
position, and should be swapped with the 6 (in offset 2).

Figure 9.25.

At this point, we have only
one element left (the 9 at
offset 3). Since the 9 should
be to the right of the pivot element, we must swap the pivot element with the 9. We now
have 2 lists:

 List A List B Figure 9.26.

We further know that the smaller numbers are in (partitioned) List A and the larger
numbers in (partitioned) List B.

We repeat the procedure above on each of the lists. Starting with List A, we once again
pick a pivot element (let’s again choose the midpoint element, or the element in offset 1
(the number 2)), and see where it should be in the list (relative to the other elements).

Figure 9.27.
When we check the position of our pivot element relative to all
of the other elements in the array, we find that we do not need to
make any swaps. Furthermore, since there is only one element
to the left of the pivot element, and the element is smaller than
the
pivot element, we know that these two (elements 1 and 2) are in the correct position. We
now have two new sublists:
 List A1 List A2 Figure 9.28.
And we know that sublist A1 is sorted.

1 2 6 9 4 3 8 10 7 5

1 2 3 9 4 6 8 10 7 5

1 2 3 4 9 6 8 10 7 5

1 2 3 4

1 2 3 4

?���� Now what???

?���� Wait, BOTH sublists are sorted!!!

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.27

Figure 9.29.

But we don’t know that. Suppose our original List A were:

Relative to our pivot element (the value 2), all of the elements are in the correct position.
However, we can see that the partitioned sublist containing the elements 4 and 3 is not in
order.

Figure 9.30.

We must therefore examine the partitioned sublist A2. Again we must first
choose a pivot element (let’s say the value 3 at offset 0). Comparing it with
the only other element, we find that are in the correct positions. Since the list
only contains two elements, and they are in the correct positions, NOW we
know the list is sorted.

Figure 9.31.
We must now perform the same activities with List
B. Again, choosing the midpoint of the array as our
pivot element (the value 8 in offset 2), we begin
comparing the elements, beginning with the outer-most ones first. We can see that the
leftmost element (the number 9) and the rightmost element (the value 5) are incorrectly
positioned, and should be swapped.

Figure 9.32.
Since all of the elements to the right of the pivot ele-
ment are in their correct positions, we must check to
see if we can swap the pivot element with an element
to the right of it. In this case we know that the 7 (in
offset 4) should be to the right of our pivot element, and so we swap the two. Once again,
we end up with two partitioned sublists:

 Sublist B1 Sublist B2 Figure 9.33.

Continuing:

Swap elements
 The Partition is in order

Swap Element

1 2 4 3

3 4

9 6 8 10 7 5

5 6 8 10 7 9

5 6 7

5 6 7

10 8 9

10 8 9

8 10 9

10 9

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.28

It is more complex, and the code necessary to perform a quick sort takes more time to
execute than does the code for a bubble sort. But the number of comparisons necessary,
especially for longer lists, is considerably less also. For our example, it took 22 comparisons
and 7 swaps (vs. the 30 comparisons and 15 swaps it would have taken with a two-way
bubble sort with checks).

For a quick sort, the maximum number of comparisons is: log2 n! Formula 9.3.
Where n is the number of elements on the list.

Consider the following comparison with the bubble sort technique:

 Table 9.17.

No. Elements

Max. Bubble Sort Compares:
(n2 – n)/2

Max. Quick Sort Compares:
log2 n!

10 45 22
100 4,950 525

1,000 999,500 9,965
10,000 49,995,000 132,877

A significant difference.

The code necessary to perform a quick sort relies on a technique called recursion (where a
function calls itself). We are not quite ready for it yet. However, in later chapters, we will
revisit the quick sort algorithm, and we will see the code then.

?���� This seems very complex, and hardly worth it!!!

?���� What about the c code necessary for a quick sort???

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.29

Summary

n this chapter, we have noticed a few interesting trade-offs which occurs:

1. Finding elements in an array is much faster if the array is sorted.
2. Sorting (and maintaining a sorted list) is a difficult and time-consuming task.
3. Improved algorithms for sorting (and maintaining) lists are programmatically more

complex than simpler approaches.
4. The fastest searching approach, a binary search, requires that the elements be stored as

a contiguous block of RAM.

In the next chapters, we will start developing data types which are intended to deal with
some of these trade-offs (not that they won’t have different trade-offs to be considered).

Chapter Terminology: Be able to fully describe these terms

Ave. No. Binary Comparisons Max. No. Sequential Comparisons
Ave. No. Sequential Comparisons Max. Sort Comparisons
Binary Searches Max. Sort Passes
Bubble Sorts Partitioned Lists
Bubble-Down Sorts Pivot Element
Bubble-Up Sorts Quick Sorts
Comparisons Recursion
Element Position Selection Sorts
Exchange Sorts Sequential Searches
External Sorts Sort Flags
Index (Indices) Sort Passes
Insertion Sorts Sublists
Internal Sorts Swapping
Max. No. Binary Comparisons Trade-off btw. Sorted and Unsorted Lists

I

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.30

Review Questions

1. What are the advantages and Disadvantages of unsorted lists? When should they be

used?

2. What are the advantages and disadvantages of sorted lists? When should they be used?

3. Given an unsorted list of 173 names, what is the maximum number of comparisons

will it take to find an name? The average number of comparisons?

4. Given a sorted list of 173 names, what is the maximum number of comparisons will it

take to find an name using a binary search? The average number of comparisons?

5. Given the sorted array: 12, 21, 29, 34, 35, 37, 42, 48, 50 show in detail the steps

which will be used to find the numbers 12, 48, and 39 using a binary search.

6. Describe the differences between internal and external sorting methods? When should

each be used?

7. Define: Exchange Sorts, Selection Sorts, and Insertion Sorts.

8. Describe how a bubble sort (one-way, two-way, with and without sorted flags) works.

When is a bubble sort appropriate?

9. Given a list of 1,453 (unsorted) elements to be sorted using a bubble-sort, what is the

maximum number of passes needed? The maximum number of comparisons?

10. Explain, in general terms, how a quick sort works.

11. Given a list of 41 elements, what is the maximum number of comparisons needed?

How does this contrast with a bubble sort?

12. What is a recursive function?

Kirs and Pflughoeft Abstract Data Types in C for Non-Computer Science Majors

Chapter 9: Searching and Sorting Page 9.31

Review Question Answers (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

