
Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                123 

 
CHAPTER 5: 

STRINGS 
 

“Simplicity of life, even the barest, is not a misery,  
but the very foundation of refinement” 

William Morris (1834–96)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
 

n some respects, this may seem strange to have a separate chapter on strings since, as we 
have already mentioned, strings ARE in numeric arrays (i.e., arrays of char).Not only are 

they numeric arrays, they are the simplest of numeric arrays 
since they only require 1 byte of storage per element. 
 

 
  
 
 
Generally speaking, strings are treated differently than the numeric arrays we discussed in the 
previous chapter. Firstly, we are not really interested in keeping track of string offsets or how 
many elements comprise a string (although we still have to account for the number of 
elements when we allocate space). Additionally, because we often must convert ‘strings of 
digits’ into their numeric equivalents, and vice versa, strings often require additional 
manipulation.  
 
With this in mind, we can begin our discussion of strings.  
 
 

I 

?���� Then why are we discussing strings in a different chapter ??? 

 
  ����������������������������������������������������������������								







��������������������������������								







 

�������������������� �	�
��� 
       
 �� ��	����	�
��������	�
��� 
       ����� ����� ����
��	����	�
���� 
��������������������������������
 �� ����� ����
��	����	�
���  
       
 �� ����� ����
��	��
�� ��	��  
������ ���	��������
���� 
 

 

   
��  
���  
��  
�����
 

 
������  
��������  

 
C

H
.  

5.
 

���������������������� �	�
������ �  



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

124                                                                                                                                    Chapter 5: Strings  

 

Strings vs. Numeric Arrays 
 

ike all numeric arrays, strings require a set number of contiguous bytes of storage.  In 
many respects, they are the simplest of arrays, since they require only one byte of storage 

per element. Therefore, calculating the address of an individual element based on the offset 
from the base address is relatively simple. 
 
One reason for not discussing strings previously is that when storing strings, we usually need 
to store an additional element with each array, namely, an end of string marker. To explain, let 
us start off with a simple example. Assume you wanted to store the string “Hello” 
 

 

 

 

 

 

 

 

OR, if wished as: 
 
 
 
 
 
 
 
 
 
 
 
Both of which would have exactly the same effect. 
 
Nothing new here. If we were to assume a base address of 1200 for our array chararray, the 
RAM storage might appear as: 
 

Figure 5.1. 
 
 
 
 

L 

H 
1200 

o 
1204 

10001101 
1205 

10010100 
1206 

01101101 
1207 

l 
1203 

l 
1202 

e 
1201 

 void main() 
   { char chararray[5]; 
      chararray[0] = 72; 
      chararray[1] = 101; 
      chararray[2] = 108; 
      chararray[3] = 108; 
      chararray[4] = 111; 
   } 

C/C++ Code 5.2. 

 void main() 
   { char chararray[5]; 
      chararray[0] = ‘H’; 
      chararray[1] = ‘e’; 
      chararray[2] = ‘l’; 
      chararray[3] = ‘l’; 
      chararray[4] = ‘o’; 
   } 

C/C++ Code 5.1. 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                125 

Once again, nothing new here. Determining the address of any element in the array is nothing 
more than the base address (e.g., 1200) plus the offset/subscript (e.g., chararray[3] is located 
at address 1200 + 3 = 1203). If we wished to display the string, we could apply the same code 
we are accustomed to: 
 
 
  int i; 
  for (i = 0; i < 5; i++) 
      printf(“%c”, chararray[i]); 
 
 
 
  
 
 
There is only one slight problem. How often do we count the number of characters in a string? 
For example, how many characters (including spaces and punctuation) were in the previous 
sentence? (there are 93, by the way) 
 
Because keeping track of the number of characters in a string (as well as the position of each) 
is very cumbersome, the c programming language, as well as most other programming 
languages, provides us with a simple method for manipulating strings. If we allow for one 
additional byte of storage when we declare a character array we can then place a ‘special’ 
character (the NULL character) at the end of the array. When we do, all that we need to keep 
track of the base address; the string will start at the base address and continue until we reach 
the special character.  
 
Suppose we had entered the code: 
 
   void main() 
   { char chararray[6]; 
      chararray[0] = ‘H’; 
      chararray[1] = ‘e’; 
      chararray[2] = ‘l’; 
      chararray[3] = ‘l’; 
      chararray[4] = ‘o’; 
      chararray[5] = ‘\0’; 
      
 
where chararray[5] (the 6th element in the array) contains the ‘special’ character we referred 
to. The character ‘\0’ is actually the null (NULL) character which (as can be determined from 
the ASCII table) is the number 0 (stored in binary as 00000000). Looking at the relevant 
section of RAM, we would see: 
 
 
 

C/C++ Code 5.4. 

C/C++ Code 5.3. 

?���� BUT…. Nothing is Different !!! 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

126                                                                                                                                    Chapter 5: Strings  

Figure 5.2. 
 
 
 
 
 
To print the string chararray, all we need to do is go to the base address (1200) and continue 
until we encounter the null character. The c code (assuming that we have already included the 
code given in 5.4.) to do this might look like: 
 
 
 
 
 
 
 
OR, if we were using pointers: 
 
 
 
 
 
 
 
Because printing strings is so common, c provides a standard function (in stdio.h) called puts 
which essentially contains the above code. To print out the string, we need only issue the 
command: 
 
 
      
 
 
There are a number of string functions provided to help deal with strings, including gets (from 
stdio.h) which gets a string from the keyboard, and some common utility functions from a file 
called string.h such as strlen, strcpy, and strcmp (we will discuss some of these a little later). 
 
  
 
 
All of the string functions discussed above (e.g., puts, gets, strcpy) assume that the null char-
acter has been added at the end. If we were to enter the code: 

H 
1200 

o 
1204 

\0 
1205 

10010100 
1206 

01101101 
1207 

l 
1203 

l 
1202 

e 
1201 

 int i = 0;  
 while (chararray[i] != ‘\0’)  
     printf(“%c”, chararray[i++]); 
 

C Code 5.5. 

 char *i; 
 i = charaary;  
 while (*i != ‘\0’)  
     printf(“%c”, *i++); 
 

C Code 5.6. 

  
puts(chararray); 

C Code 5.7. 

?���� What if we forget to add the null character to the end of a string??? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                127 

 
 
 
 
 
 
 
 
 
 
 
 

we might get the following output: 
 
   Hello8µ� 
 
 
 
  
 
 
It depends entirely on what is stored in RAM. To get the above output, the relevant section of 
RAM would contain: 

Figure 5.3. 
 

 
 
 
 
 
Decimal:  72        101         108           108          111            56           230           260            0 
 
 
 
ASCII:      H           e               l               l                0              8               µ              �             \0 
 
Fortunately, many of the common string functions and methods for initializing character 
arrays automatically include the null character at the end of the string. For example, the 
declaration: 
 
 
 
For example, using gets, or initializing the array as char chararray[] = “hello”; 
 

01001000 
1200 

01101111 
1204 

00111000 
1205 

11100110 
1206 

10000010 
1207 

1101100 
1203 

01101100 
1202 

01100101 
1201 

00000000 
1208 

 void main() 
 {   char chararray[5]; 
      chararray[0] = ‘H’; 
      chararray[1] = ‘e’; 
      chararray[2] = ‘l’; 
      chararray[3] = ‘l’; 
      chararray[4] = ‘o’; 
      puts(chararray); 
  } 

C Code 5.8. 

  
char chararray[6] = “Hello”; 

C Code 5.9. 

?���� Why??? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

128                                                                                                                                    Chapter 5: Strings  

OR the declaration: 
 
 
 
 
 
 
 
  
 
 
For the first declaration (C code 5.9) we indicated exactly how many contiguous bytes of 
storage we needed (i.e., 6), including one additional byte for the NULL character. In the 
second declaration (C code 5.10), we omitted the subscript 
number. The C compiler will automatically determine how 
many bytes we need (6 in this case, including the NULL 
character). 
 

Converting Strings To Numbers 
 

his might initially seem like a strange section to include in our discussion of strings. Why 
would we want to convert strings to numbers? After all, if we wish to enter numbers, we 

enter numbers. 
 
Well, not quite. When we enter numbers from the keyboard, we are actually entering char-
acters, or more precisely, numeric values which are stored as the data type char. When we 
read-in numbers from as ASCII file, we are actually reading-in characters. To store them in 
RAM as numeric values (i.e. other than the data type char), so that we can perform arithmetic 
operations on them, we must first convert them to their numeric equivalents. Some of the 

functions provided by c, such as the scanf function 
(which is also found in stdio.h), do this for us. 
However, it is often more efficient to do this ourselves. 

 
First, let’s go over some of the logic involved. Suppose we were trying to convert the string 
“123” (stored in memory on three contiguous bytes as the numeric values 49, 50, and 51, 
respectively) to the integer 123 (stored on two-bytes; 1-bit for the sign, 15-bits for the value). 
If we could identify each of the characters as belonging to the set of digits and determine their 
position in the character array, we could readily convert the string to its integer value. 
 
  
 
 
That’s relatively easy. We know that if the character value is between 48 and 57 (inclusive), or 
between ‘0’ and ‘9’ (inclusive), which corresponds to the decimal values 48 to 57, we know 
that they are legal values. 

T 

  
char chararray[] = “Hello”; 

C Code 5.10. 

?���� What’s the difference ??? 

?���� How do we determine if the characters belong to the set of digits??? 

          How are strings different ?  �  

������������������ ����� ����
��	����	�
������� �  



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                129 

Take the following (5.11.) lines of code: 
 
 char c[] = “123”; 
 int legal = 0, i; 
 for (i = 0; i < 3; i++) 
             if ((c[i] < 48) || c[i] > 57)) 
             legal = 1; 
 
 
All we are doing is checking the contents of each of the locations in the array. If the value of 
any element in the array is less than 48 (ASCII ‘0’) or greater than 57 (ASCII ‘9’) the char-
acter is not legal. If it is not legal, we set the value of the variable legal to 1 (0ne). If we exit 
the loop and the value of legal is still 0 (zero), the value we initialized it with, the string con-
tains only characters which can be associated with the set of digits. If the value of legal is 1 
(one), it contains other characters. 
 
  
 
 
Assume that the string consisted only of the character ‘8’. The corresponding numeric value 
would also be 8. If the string consisted of the characters ‘76’, however, the corresponding 
value would be equal to (7 * 10) + 6, or 76. If the string were ‘524’ the numeric equivalent 
would be (5 * 100) + (2 * 10) + 4 = 524; if it were ‘7838’ the value would be (7 * 1000) + (8 
* 100) + (3 * 10) + 8 = 7838. 
 
  
 
 
Consider the following (5.12.) program (although a little simplistic, it does work): 
 
 
   #include <stdio.h> 
   void main() 
  {   char nstring[] = “123”; // the character string we are to convert 
       int num = 0, // variable num will store the integer equivalent of nstring 
             offset = 0; // the offset/index for our array 
      while ((nstring[offset] >= '0') && (nstring[offset] <= '9'))    // repeat while we can convert 
            num = num * 10 + (nstring[offset++] - '0');          // determine number to date  } 
 
 
The only component which might need a little description are the last two lines of the 
program. As we already have seen we can keep converting as long as the character we are 
examining is in the set {‘0’ … ‘9’} (our command while ((nstring[offset] >= '0') && 
(nstring[offset] <= '9'))). The next line deals with the conversion process we described above. 
Let’s follow the loop: 

 C Code 5.11. 

 C Code 5.12. 

?���� What do the positions of the characters in the array have to do with the value??? 

?���� How do we actually covert??? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

130                                                                                                                                    Chapter 5: Strings  

Table 5.1. 
 
           offset     nstring[offset]     num = num * 10 + (nstring[offset++] - '0') 
 
             0                  ‘1’                  1    =   0  *  10 + (‘1’ ( = 49) - ‘0’  ( = 48)) 

  1                  ‘2’                 12   =   1  *  10 + (‘2’ ( = 50) - ‘0’  ( = 48)) 
  2                  ‘3’                 123  =  12 * 10 + (‘3’ ( = 51) - ‘0’  ( = 48)) 

       3                 ‘\0’                 * * loop terminated * * 
 
 
  
 
 
In the command offset++ (remember, this is postfix notation; the value of offset is 
incremented after we use the value nstring[offset]). 
 
  
 
 
Not really. We already noted that the declaration char nstring[] = “123”; automatically adds a 
NULL character at the end of the string. 
 
  
 
 
Because it does not allow for negative integers. Also, it does not allow conversion if the string 
is preceded by ‘white spaces’ (blanks, carriage returns, and tabs). Consider the code given in 
code 5.13. This time let’s set up our program as a function which accepts the base address of 
the character array and returns the integer value represented by the string. 
 
  
 
 
 
We don’t necessarily have to duplicate the code each time, but the conversion must take place. 
Fortunately, because conversion is so common place, the (almost) identical code is available 
in the function atoi which is found in file stdlib.h. Only the commands shown in C code 5.14. 
need be included in the program. 

?���� Where does the value of offset get incremented??? 

?���� How can offset have the value 3? There are only three characters in the array !! 

?���� Why is this program simplistic??? 

?����
Do we have to duplicate the code given in 5.13. every time we wish to read a 

numeric value from the keyboard or from an ASCII file? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                131 

 
 
int atoi(const char *stringnum); 
void main() 
{  int num; 
    char *nstring = "123"; 
    num = atoi(nstring);   } 
 

 int atoi(const char *stringnum) 
 {  int n = 0,   // The absolute integer value 
          sign = 1;  // If unsigned, then positive 
     while (*stringnum == ' ' || *stringnum == '\n' || *stringnum == '\t')   // skip white spaces 
          stringnum++;                             // move to next position 
      if ((*stringnum == '+') || (*stringnum == '-'))  // check if signed 
     {   if (*stringnum == '-')  // if negative 
                 sign = -1;  // then set in the value 
          stringnum++;    } // and go the next character 
      while ((*stringnum >= '0') && (*stringnum <= '9'))       // Legal value?? 
      {  n = n * 10 + *stringnum  - '0';          // determine number to date 
           stringnum++;     }                        // go to next position 
      return(sign * n);  }                   // return the integer 
 
 
 

 
  #include <stdlib.h> 
     .   .   .   .   . 
  char *inputstring = “123”; 
  int num; 
  num = atoi(inputstring); 
  
 
Notice that inputstring is declared as a pointer. Notice also that in case, the value of num after 
the call to atoi will be 1234, since the string “1234.56” represents a real number. We could 
have the string returned as a real number, however, if the call were made to the function atof 
(Alpha TO Float; also available in file stdlib.h), as in C Code 5.15. 
 
 
  #include <stdlib.h> 
     .   .   .   .   . 
  char *inputstring = “1234.56”; 
  float rnum; 
  rnum = atof(inputstring); 
  
 

 C Code 5.13. 

 C Code 5.14. 

 C Code 5.15. 

          How do we convert strings ?  �  



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

132                                                                                                                                    Chapter 5: Strings  

 
  
 
 
 
YES.  
 
 

Converting Numeric Values To Strings 
 
The process may seem a little strange at first, but in fact we have used the process before. 
Remember how we converted from decimal to binary. For example converting 2310 to binary:  

Calculation 5.1. 
 23 / 2 = 11  23 % 2 = 1  2310  =  101112 
 11 / 2 =  5  11 % 2 = 1 
   5 / 2 =  2    5 % 2 = 1 
   2 / 2 =  1    2 % 2 = 0    *** Remember: we have to collect the bits in  
   1 / 2 =  0    1 % 2 = 1            reverse order 
 
If we wished to write a program to convert an integer to binary we would have to store the bits 
in a string and then reverse the order of the string, just as we did above. Our program might 
look something like it does in 5.16.: 
 
 
    void main() 
   {  int decimal = 23,    // The integer we wish to convert 

 index = 0,     // one character array index 
 offset = 0;    // another character array index (for swapping)  

       char binary[10],     // the array where we will store the binary number 
               tempch;    // temporary storage the character (for swapping)  
       while (decimal > 0)   // eventually decimal=decimal/2 will yield 
decimal=0 
       {  binary[index++] = decimal % 2 +'0'; // store the remainder 
          decimal = decimal / 2;  }  // get the new quotient 
       binary[index--] = '\0';   // set in the null character & decrement the index 
       while (index > offset)   // this will our cue stop swapping 
       {  tempch = binary[index];  // store the uppermost non-swapped character 
           binary[index--] = binary[offset]; // move in the lowermost character & decrement 
           binary[offset++] = tempch; }  } // move in the old uppermost character 
 
 
Once again, let’s follow the variables as we go through the loop (See Table 5.2) after we have 
initialized the integer (int) and character (char) variables: 

 C Code 5.16. 

?����
If we wish to store numeric values to an ASCII file, do we first have to convert 

them to strings??? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                133 

Table 5.2. 

decimal decimal > 0 
? 

index Binary[index++] = decimal % 2 + ‘0’ binary decimal/2 

23 TRUE 0 23 % 2 + ‘0’  =  1 + 48  = 49  =  ‘1’ “1” 23/2  =  11 
11 TRUE 1 11 % 2 + ‘0’  =  1 + 48 =  49  =  ‘1’ “11” 11/2  =  5 
5 TRUE 2 5 % 2 + ‘0’  =  1 + 48  =  49  = ‘1’ “111” 5/2  = 2 
2 TRUE 3 2 % 2 + ‘0’  =  0 + 48  =  48  = ‘0’ “1110” 2/2  =  1 
1 TRUE 4 1 % 2 + ‘0’  =  1 + 48  =  49  = ‘1’ “11101” 1/2  =  0 
0 FALSE ** Loop Terminated   

 
After the loop terminates, the next command: 
 

binary[index--] = '\0'; 
 

puts a null character in binary[5] and then decrements the counter (index = 4). If we were to 
look at the string binary, we would see: 
 

“11101\0” 
 

As we can see, the string is in reverse order (111012 = 24 + 23 + 22 + 20 = 16 + 8 + 4 + 1 = 
2910 while 101112 = 24 + 22 + 21 + 20 = 16 + 4 + 2 + 1 = 2310), so we need to flip it around. 
Following the variable values as we progress through the loop (Table 5.3): 

Table 5.3. 
 
index offset 

 
index > offset? 

tempch = 
binary[index] 

binary[index--] = 
binary[offset] 

binary[offset++] = 
tempch 

 
  binary 

   4    0      TRUE         ‘1’           ‘1’     binary[0] = ‘1’  “11101” 
   3    1      TRUE         ‘0’           ‘0’     binary[1] = ‘0’  “10111” 
   2    2      FALSE         *** Terminate Loop   
 
Converting an integer to a string is performed in exactly the same fashion, except that instead 
of taking the remainder of the number divided by 2 and converting it into a character, we take 
the remainder of the number divided by 10 and converting it into a character1. We still have to 
reverse the string once we obtain it, however. Additionally, remember that integers can be 
signed or unsigned; we have to take that into account also. 
 
Let’s rewrite the program again using the function itoa (integer to alpha), which will take our 
numeric digit (0, …, 9) and convert it to the numeric equivalent (48, .., 57) as well as function 
reverse, which will take the ASCII equivalents and store them in reverse order. Lest we get 
out of practice, let’s use pointers (these will continue to gain importance). C Code 5.17. 
illustrates how this can be done. 
 

                                                 
1 This procedure works for any base 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

134                                                                                                                                    Chapter 5: Strings  

 
 
 
     #include <string.h>   // we need this for function strlen 
 char itoa(int num, char *numstring); // itoa prototype 
 char reverse(char *strg);              // our reverse function prototype 
 
 void main() 
 {  int number = -582;   // the integer to convert 
     char string[11];   // where we will place the converted integer 
     itoa(number, string);      // call itoa passing the integer and the string 
       } 
  
      char reverse(char *strg)   // this will reverse the order of the string 
 {  int offset1,offset2,tempoffset;  // the offsets and temp storage 
       for (offset1 = 0, offset2 = strlen(strg) - 1; offset1 < offset2; offset1++, offset2--) 
    {   tempoffset = strg[offset1];  // store the lowermost character 
         strg[offset1] = strg[offset2];  // move the uppermost to the lowermost 
              strg[offset2] = tempoffset;   } // move the lowermost to the uppermost 
      } 
 char itoa(int num, char *numstring) // this will establish the string 
 {   char ch, *startstring;   // temporary storage 
      startstring = numstring;  // Store the base address of the string 
           int sign = 1;    // assume the number is unsigned 
           if (num < 0)    // is the number negative? 
          {    num = -num;   // then make it an absolute number 
           sign = -1;      }   // and note the sign 
     while (num > 0)   // now keep determining the quotient 
     {   *numstring++ = num % 10 + '0'; // store the remainder 
          num /= 10;   }   // get the new quotient 
          if (sign == -1)    // if it is a negative number 
         *numstring++ = '-';   // add the sign to the end 
          *numstring = '\0';   // include the null character 
          reverse(startstring);   // and reverse the string 
 } 
 
 
  
 
 
In function main, we are storing the value –582 in location number, requesting 11 bytes of 
contiguous storage at location string, and then passing the numeric value –582 AND the base 
address of string to function atoi (which will store the numeric value at address num and the 
address of string at location numstring). Let’s assume that the address of string is 7850 and 
follow what happens to each of the variables in function atoi. 

 C Code 5.17. 

?���� How would this work??? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                135 

The first instructions we encounter: 
 

           int sign = 1; // assume the number is unsigned 
           if (num < 0) // is the number negative? 
          {    num = -num; // then make it an absolute number  
                sign = -1;      } // and note the sign 
 

simply initializes (integer) location sign with the value 1, and then checks to see if it should 
actually be –1. Since num < 0, we change the sign of contents of num (now, +582) and assign 
the value –1 to location num. The loop:  
 

while (num > 0) 
 

Executes in much the same manner as we saw in table 5.4, namely it converts each digit to its 
ASCII equivalent, and stores them at address string (which we stored at address numstring). 
The only real difference is that instead of storing the remainder of a number divided by 2 (and 
then adding the value 48 to get the ASCII value), we store the remainder of the number 
divided by 10 (and then add 48 to get the ASCII value). 
 
The notation might seem a little strange at first, but that is because we are trying to illustrate 
some of the ‘shortcuts’ we discussed previously. The command  
 

*numstring++ = num % 10 + '0'; 
 

is really the same as the command binary[index++] = decimal % 2 +'0';  which we saw in C 
Code 5.16. Instead of incrementing the array offset (after we store the ASCII equivalent of the 
remainder, we are incrementing the address of the address (remember, our base address is 
string) by 1 (remember, we are incrementing a character address). Again, we are storing the 
ASCII equivalent of the remainder. The following statement: 
 

num /= 10; 
 

Simply assigns the quotient of the contents of location num to location num. Let’s track the 
variables through the loop: 

Table 5.4. 

num num > 0 numstring *numstring++ = decimal % 10 + ‘0’ *numstring num/10 
582 TRUE 7850 582 % 10 + ‘0’  =  2 + 48  = 50  =  ‘2’ “2” 582/10  =  58 
58 TRUE 7852 58 % 10 + ‘0’  =  8 + 48 =  56  =  ‘8’ “28” 58/10  =  5 
5 TRUE 7854 5 % 10 + ‘0’  =  5 + 48  =  53  = ‘5’ “285” 5/10  = 0 
0 FALSE ** Loop Terminated   

 
 
  
 
 
 
That is why we stored the base address at location startstring.  
 
 

?����
But the address contained at location numstring is now 7854??? The base 

address of string (in function main) is 7850!!! 
 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

136                                                                                                                                    Chapter 5: Strings  

There are three additional notes to be made here: 
 
1. The numeric value originally passed was negative. That is why we include the statement   
 

    if (sign == -1)     
                  *numstring++ = '-'; 
 

which will add the character ‘-‘ to the string and increment the address contained at 
location numstring. If we were to look at location numstring in RAM, we would find the 
string “285-“. 

 

2. Strings should contain a NULL character at the end. That is why we include the statement 
 

*numstring = '\0'; 
 

If we were to look at location numstring in RAM, we would find the string “285-\0“. 
 

3. No matter how we look at it, the string (except for the NULL character) is in reverse order. 
That is why we pass the base address of the string (which we previously stored in location 
startstring) to function reverse. 

 
Function reverse receives as its only input the base address of our string (variable string in 
function main). The loop that we apply: 
 

for (offset1 = 0, offset2 = strlen(strg) - 1; offset1 < offset2; offset1++, offset2--) 
 

1. Initializes offset1 to 0 (offset1 will point to the left-end of the unordered string) 
2. Initializes offset2 to the right end of the string. Since the string we pass is “285-\0“ (a 

length of 4, since the NULL character doesn’t count in the length) , we set the offset to 
strlen(strg) – 1 since we do not wish to change the position of the NULL character. 

3. Continues as long as offset1 is less than offset2. 
4. Increments offset1 by 1, and decrements offset2 by 1, as long as our check (#3) remains 

TRUE. 
 
The procedures followed correspond directly to what we saw previously. If we were to track 
the variable values (remember, at this point in time, *str would be “285-“) through the loop, 
we would see:  

Table 5.5. 

 
offset1 

 
offset2 

offset1< 
offset2 

tempoffset = 
strg[offset1 

strg[offset1] =  
strg[offset2]; 

strg[offset2] = 
 tempoffset; 

 
*strg 

 
offset1 

 
offset2 

0 3 TRUE ‘-‘ ‘2’ ‘-‘ “-852” 1 2 
1 2 TRUE ‘8’ ‘5’ ‘8’ “-582” 2 1 
2 1 FALSE ** Terminated     

 
Which is the correct value of the numeric value –582 translated to the ASCII characters          
“-582”. 

          How do we convert numbers ?  �  



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                137 

 
  
 
 
 
Once again, the c programming language provides the function itoa (as well as atoi, and atof, 
and atol, and fota, and, … well conversions between all of the standard data types) in stdlib.h, 
so we do not always have to write it (See C Code 5.18.: Check the parameters to be passed; 
they do vary slightly from those previously). 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we might imagine, the output of our program would be: 
 
   -582 
 
 

Summary 
 

trings are in many respects the simplest of all array types since they take up 1-byte (8-bits) 
of storage per element and calculating the address of any element is extremely simple 

(simply add the array offset to the base address). However, because we typically are 
unconcerned about how many elements are in an array, or what the position of each element 
is, we have to devise new approaches to dealing with them, most notably, the addition of a 
NULL character (‘/0’) at the string. Also, because conversion between strings and numeric 
variables is so commonly performed, we need to be familiar with the different approaches 
necessary to convert them.   
 
 
 
 
 
 
 

S 

  
#include <stdio.h>   // we will print out the value as a string this time 
#include <string.h>   // we need this for function strlen 
#include <stdlib.h>   // We need this for all of our conversions 
void main() 
{  int number = -582;   // the integer to convert 
    char string[11];   // where we will place the converted integer 
    string =  itoa(number);     // call itoa passing the integer and the string 
    puts(string);          // print out the string “-582” 
} 
  

C Code 5.18. 

?����
Must we ALWAYS duplicate the above code in order to store integers in ASCII 

format??? 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

138                                                                                                                                    Chapter 5: Strings  

 

Chapter Terminology: Be able to fully describe these terms 
 
file stdlib.h. function fota 
function atof function gets 
function atof function itoa 
function atoi function puts 
function atol NULL character 
 
 

Review Questions 
 
1. Explain why strings are viewed differently from numeric arrays. 
 

2. Explain how strings are stored differently in RAM than are numeric arrays 
 

3. Given: 
 

 char mystring[5]; 
 
 

 AND we learn that the base address of mystring is 8356. If we were to look in RAM, we 
would find: 

 

 
 
 
 
 
 

 If we were to issue the command: 
 

 puts(mystring); 
 

 what would the output be?? 
 
4. Given: 
 

char helloarray[] = “hello”; 
 

Show EXACTLY how this would be stored in RAM assuming a base address of 12000 
 
 

5. Explain what the function atoi does. 
 

6. Explain what the function ftoa does. 
 

 

01100000 00010010 01010000 01110101 01110010 01100101 00100000 01000111 01100001 11001110 01100010 
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 

8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 
01100001 01100111 01100101 11111110 00000000 10110011 10110010 00010000 00000000 11001110 00100110 

������������ ���	�� ������
������ �  



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft                      

Chapter 5: Strings                                                                                                                139 

 

Review Question Answers (NOTE: CHECKING THE ANSWERS 
BEFORE YOU HAVE TRIED TO ANSWER THE QUESTIONS 

DOESN’T HELP YOU AT ALL) 
 
 

1. Explain why strings are viewed differently from numeric arrays. 
 

Strings ARE numeric arrays of type character, but we are not necessarily interested 
in each offset from the base address 

 

1. Explain how strings are stored differently in RAM than are numeric arrays 
 

Strings require 1 additional byte at the end of the array: the NULL (‘/0’) character 
 

3.   Given:   char mystring[5]; with a base address of: 8356.  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

NOTICE: Even though we reserved only 5-
bytes, the puts command will print until a 
NULL character is encountered. 

 
4.  Given: char helloarray[] = “hello”;  Show RAM Storage assuming a base address of 1200 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

01100000 00010010 01010000 01110101 01110010 01100101 00100000 01000111 01100001 01110010 01100010 
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 

Base Address 

80 

P 

117 

u 

114 

r 

101 

e 

32 

(SP) 

71 

G 

97 

a 

114 

r 

98 

b 

01100001 01100111 01100101 11111110 00000000 10110011 10110010 00010000 00000000 11001110 00100110 
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 

97 

a 

103 

g 

101 

e 

254 

� 

0 

NULL 

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 
01100001 01100111 01001000 01100101 01101100 01101100 01101111 00000000 00000000 11001110 00100110 

H 

72 

e 

101 

l 

108 

l 

108 

o 

111 

/0 

0 



Abstract Data Structures for Business In C/C++      Kirs and Pflughoeft 

140                                                                                                                                    Chapter 5: Strings  

5. Explain what the function atoi does.  Converts a string to an integer 
 

6. Explain what the function ftoa does.  Converts a real number (float) to a string 
 


