
Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

98 Chapter 4: Numeric Arrays

CHAPTER 4:

NUMERIC ARRAYS

“All things begin in order, so shall they end”
Thomas Browne (1605 - 1682)

Introduction

n this chapter, we introduce our first simple abstract data structure: Numeric Arrays
(arrangements of integers and real numbers) You may be wondering why we chose

numeric arrays as our first abstract data structure. In some respects, strings are much
simpler. In fact, strings are actually numeric arrays (which we could have concluded since
we know that characters are really as numbers), but there are a few extra considerations
with strings that we do not wish to deal with here (nothing major; just not anything that we
need to be concerned with at the present time). We will deal with strings in the following
chapter.

One consideration in which abstract data type to introduce first was simplicity. Numeric
arrays certainly fill this criteria (although, as we get further into the subject matter, we find
that arrays can become somewhat complicated). Another consideration was structure
usefulness. Arrays are, arguably, the most used data structure in existence. Finally, another
concern was introducing structures that would serve as building blocks for later data
structures. Arrays can be (and frequently are) incorporated into a number of additional data
structures.

I

 ��								

��������������������������������								

��������������������	

����
 ������
���������������
 ������
������������������
������������������������� �� ��
��� �������
��
 ����������������������
��
������ ��� ���������
������

����

� ������� ���������

����
�����������������
�����
� �� ����� �����
��

������
� ��
������������
�����

������
��������

C

H
. 4

.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 99

Numeric Arrays

n array is a data structure which contains a fixed number of
contiguous storage elements all of the same data type. A one-
dimensional array is referred to as a vector. Multi-dimensional arrays

are referred to as Matrices (pl.) or a Matrix (sg.).

Suppose that we wished to store the first 10 prime numbers (1, 2, 3, 5, 7, 11, 13, 17, 19,
23) in RAM. Of course, we could do this by storing them as individual integer variables
(i.e., reserving 10 individual integer addresses) one for each number. For example, using
the c declaration:

The problems with declaring variables in this manner,
however, are:

1. It is very tedious to have to declare each of the

individual variables
2. If we need to find a particular value and we don’t know which variable location it is

stored in, searching for it becomes cumbersome (we’ll see why a little later).

In this case we wish to store all the variables in order, and since each prime number takes
up the same amount of storage (2-bytes per integer), all we really need to do is establish a
base address for the first element in the array. Remember, this was the definition we gave
earlier: an array is a fixed number of contiguous storage elements all of the same data
type. In RAM (assuming that the first available contiguous block (= 10 elements * 2-
bytes/element = 20 bytes of storage) was at address 20000), it might look like:

Figure 4.1

20000 (prime1) 20001 (prime1) 20002 (prime2) 20003 (prime2)
00000000 00000001 00000000 00000010

20004 (prime3) 20005 (prime3) 20006 (prime4) 2007 (prime4)
00000000 00000011 00000000 00000101

20008 (prime5) 20009 (prime5) 20010 (prime6) 20011 (prime6)
00000000 00000111 00000000 00001011

20012 (prime7) 20013 (prime7) 20014 (prime8) 20015 (prime8)
00000000 000001101 00000000 00010001

20016 (prime9) 20017 (prime9) 20018 (prime10) 20019 (prime10)
00000000 000010111 00000000 00011011

where:

A

NOTE: Since all values are
less than 255, we could have
declared these variables
using the data type CHAR

 int prime1 = 1, prime2 = 2, prime3 = 3, prime4 = 5, prime5 = 7, prime6 = 11,
 prime7 = 13, prime8 = 17, prime9 = 19, prime10 = 23;

 C/C++ Code 4.1

DDeeff

���������������������	

������� �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

100 Chapter 4: Numeric Arrays

 Table 4.1

Variable Name address(es) Decimal Value Binary Value
prime1 20000/20001 1 0000000000000001
prime2 20002/20003 2 0000000000000011
prime3 20004/20005 3 0000000000000101
prime4 20006/20007 5 0000000000000111
prime5 20008/20009 7 0000000000001011
prime6 20010/20011 11 0000000000001101
prime7 20012/20013 13 0000000000010001
prime8 20014/20015 15 0000000000010011
prime9 20016/20017 19 0000000000010111
prime10 20018/20019 23 0000000000011011

Let’s take the second problem first. Why is it cumbersome to search for an element in the
block?

Suppose we were looking for the value 19 (which is actually associated with variable
prime8, or address(es) 20014/20015) but we did not know where it was located, we would
have to enter (the relevant portion of) the c code:

The c programming language (as do all third-generation languages provide for convenient
declaration of an array:

Because we know that the elements are stored contiguously, and that each element in the
array takes 2-bytes (16-bits) of storage, all we really have to know is the base address of
the array. Once we have established a base address, we can calculate where every other

 if (prime1 == 19) then printf(“Stored in prime1\n”);
 else if (prime2 ==19) then printf(“Stored in prime2\n”);
 else if (prime3 == 19) then printf(“Stored in prime3\n”);
 else if (prime4 == 19) then printf(“Stored in prime4\n”);
 else if (prime5 == 19) then printf(“Stored in prime5\n”);
 else if (prime6 == 19) then printf(“Stored in prime6\n”);
 else if (prime7 == 19) then printf(“Stored in prime7\n”);
 else if (prime8 == 19) then printf(“Stored in prime8\n”);
 else if (prime9 == 19) then printf(“Stored in prime9\n”);
 else if (prime10 == 10) then printf(“Stored in prime10\n”);
 else printf(“The value does not exist\n”);

 C/C++ Code 4.2.

 int prime[10] = {1, 3, 5, 7, 11, 13, 17, 19, 23, 27};h

 C/C++ Code 4.3

?���� How do we store the elements on an array (vector)???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 101

element in the array is located (since each requires 2-bytes of storage). For example if the
base address of the array (= the first element in the array) is at address 20000 (and 20001),
then:

 Table 4.2

Element no/Position/Index Address(es) Reference
 1 20000 (and 20001) prime[0]
 2 20000 + 2 = 20002 (and 20003) prime[1]
 3 20002 + 2 = 20004 (and 20005) prime[2]
 4 20004 + 2 = 20006 (and 20007) prime[3]
 5 20006 + 2 = 20008 (and 20009) prime[4]
 6 20008 + 2 = 20010 (and 20011) prime[5]
 7 20010 + 2 = 20012 (and 20013) prime[6]
 8 20012 + 2 = 20014 (and 20015) prime[7]
 9 20014 + 2 = 20016 (and 20017) prime[8]
 10 20016 + 2 = 20018 (and 20019) prime[9]

Calculating Array Addresses

ne of the advantages of an array is that we are able
to readily find the address of any element in that

array using very simple calculations. All we need is two
components:

1. The base address of the array (the location in memory where the array begins)
2. The array offset (often also referred to as the subscript or index)

Just as we did with the scalar variables in Figure 4.1., we know that the elements in the
array will be stored contiguously (i.e., one right after the other). As before, the same
amount of storage will be required. Assuming we can start storing the numbers at location
20000, the first number will be stored at location 20000 (and 20001), and the last number
will be stored at location 200018 (and 20019). In this case that means that prime[0] = 1
will be stored in addresses 20000 and 20001, prime[1] = 3 will be stored in addresses
20002 and 20003, and prime[9] = 27 will be stored in addresses 20018 and 20019. The
data is allocated in the same order as before, but the variable names have changed (see
figure 4.2).

Figure 4.2

O

?���� What is the column to the right? What does reference mean?

 How are elements stored ? �

 What are the advantages ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

102 Chapter 4: Numeric Arrays

20000 (prime[0]) 20001 (prime[0]) 20002 (prime[1]) 20003 (prime[1])
00000000 00000001 00000000 00000011

20004 (prime[2]) 20005 (prime[2]) 20006 (prime[3]) 2007 (prime[3])
00000000 00000101 00000000 00000111

20008 (prime[4]) 20009 (prime[4]) 20010 (prime[5]) 20011 (prime[5])
00000000 00001011 00000000 00001101

20012 (prime[6]) 20013 (prime[6]) 20014 (prime[7]) 20015 (prime[7])
00000000 000100001 00000000 00010011

20016 (prime[8]) 20017 (prime[8]) 20018 (prime[9]) 20019 (prime[9])
00000000 000010111 00000000 00011011

In some programming languages, we could have. In c, however, we determine the position
of an element in an array by determining its offset from the base address. The formula is
very simple. Any element’s address in the array can be calculated as:

Formula 4.1.
element address = base address + offset * (number bytes/element)

This calculation is only possible because we are working with arrays, which have the
certain constraints. Remember what we did: When we made the declaration int prime[10],
we requested that 20-bytes of contiguous storage be set aside (10 elements, each requiring
2-bytes of storage). Once we know where the first element in the array is located (in this
case at address 20000), we know where every other element in the array is located by
calculating their offset from the base address (i.e., 20000). Thus, the address of prime[4]
would be 20000 + (4 *2) = 20008; prime[8] would be 20000 + (8 * 2) = 20016; prime[0]
would be 20000 + (0 * 2) = 200000.

Once again, notice that the address of the variable prime (without a subscript) is identical
to the (base) address of the individual element address for prime[0].

prime == &prime[0]

Because this is an integer array. As we will see, if it were a character array, we would
multiple the offset by 1 and add it to the base address; if it were a float array, or an array of
longs, we would multiply the offset by 4 and add it to the base array. If it were an array of
data type double, we would multiply the offset by 8; if it were an array of data type long
double, we would multiply the offset by 16.

?����
Why did we start with prime[0] instead of prime[1] (which would indicate that

it is the first element in the array)???

?���� Why do we multiply the offset by 2 to determine the element’s address???

?���� Why is finding an element in the array easier using this notation???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 103

As we have seen, we can quickly calculate the address of every element in the array, we
can immediately examine the contents of that location. Review the code necessary (C/C++
Code 4.2) we needed to find an element when it was stored on one of ten scalar variables.
Using arrays, the same code1 might look like:

Simpler? Quite a bit. And much more flexible. If we had a 100 elements, or even a
1000000000 elements in the array, the number of lines of code necessary would not
change.

Yes. As we mentioned earlier, we still need
contiguous memory.

Arrays of Data Type Float

here are very few difference between integer arrays and float arrays, except that we would
be storing the values using 4-bytes (32-bits).

Assume that we were storing the square-roots of the (integer) numbers from 1 to 10. In this
case, we would store (Figure 4.3.):

1 This section of code assumes that we have made the declaration: int i;

T

 for (i = 0; i < 10; i++) // for the offset values from 0 to 9
 if (prime[i] == 19) // does the address contain the value 19?

printf(“Stored in prime[%d]\n”,i); // if so, print the variable offset
 else if (i == 9) // otherwise, if we haven’t found it …
 printf(“The value does not exist\n”); // display the not found message

C/C++ Code 4.4.

?���� What if we were storing real numbers (floats)???

?���� Are there any disadvantages to arrays???

 What are the disadvantages ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

104 Chapter 4: Numeric Arrays

Figure 4.3.

Integer Value 1 2 3 4 5 6 7 8 9 10

Square root :

array (sqrt) offset: 0 1 2 3 4 5 6 7 8 9

Let’s also assume that we have already declared our real array and associated it with the
variable name sqrt. That is assume we issued the command:

In this case, we would need 40 contiguous bytes of storage, since each element in the
(float) array requires 4-bytes of storage. If this block of memory was available starting at
(for example) location 15012, (i.e., sqrt == &sqrt[0] == 15012) the relevant portion of
RAM might appear as it does in figures 4.4. and as outlined in table 4.3. 2:

Figure 4.4.
15012 (sqrt[0]) 15013 (sqrt[0]) 15014 (sqrt[0]) 15015 (sqrt[0])

01000000 00000000 00000000 00000001
15016 (sqrt[1]) 15017 (sqrt[1]) 15018 (sqrt[1]) 15019 (sqrt[1])

01000000 00000000 00000101 10000110
15020 (sqrt[2]) 15021 (sqrt[2]) 15022 (sqrt[2]) 15023 (sqrt[2])

01000000 00000000 0000110 11000100
15024 (sqrt[3]) 15025 (sqrt[3]) 15026 (sqrt[3]) 15027 (sqrt[3])

01000000 00000000 00000000 00000010
15028 (sqrt[4]) 15029 (sqrt[4]) 15030 (sqrt[4]) 15031 (sqrt[4])

01000000 00000000 00001000 10111100
15032 (sqrt[5]) 15033 (sqrt[5]) 15034 (sqrt[5]) 15035 (sqrt[5])

01000000 00000000 00001001 10010001
15036 (sqrt[6]) 15037 (sqrt[6]) 15038 (sqrt[6]) 15039 (sqrt[6])

01000000 00000000 00001010 01010110
15040 (sqrt[7]) 15041 (sqrt[7]) 15042 (sqrt[7]) 15043 (sqrt[7])

01000000 00000000 00001011 00001100
15044 (sqrt[8]) 15045 (sqrt[8]) 15046 (sqrt[8]) 15047 (sqrt[8])

01000000 00000000 00000000 00000011
15048 (sqrt[9]) 15049 (sqrt[9]) 15050 (sqrt[9]) 15051 (sqrt[9])

01000000 00000000 00001100 01011010

2 Binary numbers entered are not true representations of the values

1.000 1.414 1.732 2.000 2.236 2.449 2.646 2.828 3.000 3.162

 float sqrt[10];

 C/C++ Code 4.5.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 105

Where: Table 4.3.

Basically, the same code as we used previously (see C/C++ Code 4.6):

Yes, provided all of the elements of the array are of the same (basic) data type (Let’s not
forget our definition of an array). In each case, the amount of contiguous storage required
will be equal to the number of elements in the array times the amount of storage required

for the data type. For the available c programming
language data types:

Array offset Address(es)

 0 15012 (through 15015)
 1 15012 + 1 * 4 = 15016 (through 15019)
 2 15012 + 2 * 4 = 15020 (through 15023)
 3 15012 + 3 * 4 = 15024 (through 15027)
 4 15012 + 4 * 4 = 15028 (through 15031)
 5 15012 + 5 * 4 = 15032 (through 15035)
 6 15012 + 6 * 4 = 15036 (through 15039)
 7 15012 + 7 * 4 = 15040 (through 15043)
 8 15012 + 8 * 4 = 15044 (through 15047)
 9 15012 + 9 * 4 = 15048 (through 15051)

 #include <stdio.h>
 void main()
 { float sqrts[10] = {1.0, 1.414, 1.732, 2.0, 2.236, 2.449, 2.646, 2.828, 3.0, 3.162};
 int i; // offset index
 for (i = 0; i < 10; i++) // set the loop parameters

if (sqrts[i] == 2.646) // address contains 2.646?
printf(“Stored in sqrts[%d]\n”,i); // if so, print the variable offset

 else if (i == 9) // if we haven’t found it …
 printf(““The value does not exist\n”); // display the not found message
 }

 C/C++ Code 4.6.

?����
What c code is necessary to store and locate an element in the array (for

example, the value 2.646)???

?���� Can any data type be stored in an array???

 Can any data type be stored ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

106 Chapter 4: Numeric Arrays

 Table 4.4
Data Type No. bytes in array

 char 1 * n
short, int 2 * n
long, float 4 * n
double 8 * n
long double 16 * n

Where n is the number of elements in an array.

In this case, we would need a total of 1,600,000 contiguous bytes of storage. It might not
be available (we will address these issues when we get to dynamic memory allocation.

In the manner we have discussed arrays – NO. However, we can create a new data type
which will allow is to do so. We will discuss these data structures in chapter 7.

Accessing Array Elements Using Pointers

ecause we know that the base address of an array is actually the address of the first
element, and we know that each element in the array requires the same amount of

storage, we can actually determine the contents of any element in the array without the use
of subscripts. Take, for example, the following C/C++ program(Code 4.7)3:

3 The code provided is not intended to be efficient; it does not stop once the value is found, nor will it print anything if
the value is not found.

B

?����
What if I need to store a large number of variables, say 100,000 elements of

data type long double ???

?���� Does that mean we can NEVER mix data types???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 107

In this program, the pointer to the array (sqrtsptr) first gets the base address of the array
(sqrtsptr = sqrts: REMEMBER: referring to the variable name of an array without using
any subscripts (offset) is the same as referring the base address of the first element in the
array(e.g., sqrt == &sqrt[0])). According to our previous example, this is the address
15012. As long as the address contained in sqrtsptr is less than or equal to the address of
the last element in the array (sqrtsptr[9] = 15048) we will check to see if the value of the
floating-point number contained at that address is equal to the value we are looking for (in
this case, 2.236). If it is, we will print out the address where the number is located
(sqrtsptr). We then move on to the next element in the array (sqrtsptr++). In the first pass
we increment the value of sqrtsptr from 15012 to 15016 (which is the address of sqrt[1]).
The program will stop only when it contains the address 15052.

Remember, we declared the pointer sqrtsptr to be of type float. Since floats require 4-bytes
of storage, incrementing the pointer will increment the value of the pointer by 4 as well.

The address 15052 may not be part of the array, but it is a valid address. In fact, if we were
to enter the commands:

Something would be printed out for the value of *sqrtsptr at location 15052. It would be
pure jibberish (as we’ve see when when we try to print out values for uninitialized
variables), but there would be something located in addresses 15052 through 15055

 #include <stdio.h>
 void main()
 { float sqrts[10] = {1.0, 1.414, 1.732, 2.0, 2.236, 2.449, 2.645, 2.828, 3.0, 3.162};
 float *sqrtsptr; // pointer to the array
 sqrtsptr = sqrts; // set in the base address of the array
 while (sqrtsptr <= &sqrts[9]) // search entire array
 { if (*sqrtsptr == 2.236) // search for value 2.236
 printf("%5.3f found at address %p\n",*sqrtsptr, sqrtsptr); // if found
 sqrtsptr++; } } // increment the pointer value

C/C++ Code 4.7.

sqrtsptr = sqrts[10];
printf(“The value %7.3f is located in address %p\n”, *sqrtsptr, sqrtsptr);

 C/C++ Code 4.8.

?����
Why isn’t the value of sqrtsptr incremented from 15012 to 15013 after the first

pass???

?����
How could the address contained in the variable (address) sqrtsptr ever become

15052? That address is not part of the array sqrts.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

108 Chapter 4: Numeric Arrays

(REMEMBER: pointers require 4-bytes of storage), and the c program would attempt to
interpret it as a floating-point number.

Let’s assume that the base address of the float array sqrt (sqrt == sqrt[0] == 15012; refer to
figure 4.4. for a visual representation of how these values would be store in binary). Let’s
further assume that when we issued the declaration:

float *sqrtsptr; (see code 4.7 for origin)

We were assigned the address 15126 (through 15129) which we associate with the variable
name sqrtsptr, and where we will store an address (which, if we were to go to, would
contain a value of type float). If we were to look at that section of RAM (addresses 15126
through 15129) we might (at the time of assignment) find:

Figure 4.5.
15126 15127 15128 15129

00001000 00010001 00011000 00010011

Which would translate (in simplified, decimal terms) as:
Figure 4.6.

15126 through 15129
135338003

since 227 + 220 + 216 + 212 + 211 + 24 + 21 + 20 = 134,217,728 + 1,048,576 + 65,536 + 4,096
+ 2,048 +16 + 2 + 1 = 135,338,003

Remember, we haven’t initialized the variable (location) sqrtsptr yet. Whatever was in that
location previously, is still there (regardless of whether the address exists or not).

After we issue the command: sqrtsptr = sqrts; (see Code 4.7.)

The relevant portion of RAM might appear as:
Figure 4.7.

15126 through 15129
15012

since sqrts == &sqrts[0] == 15012.

For the subsequent commands (again, refer to C/C++ code 4.7):

?���� How would this appear in RAM???

?����
How could we have a RAM address of 135 Million something ??? My

computer at home only has 64 Megabytes??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 109

At the end of our first pass through the loop (we will continue as long as the contents of
location sqrtsptr are less than or equal to 15048 (==&sqrts[9])), the portion of RAM
associated with sqrtsptr would appear as:

Figure 4.7.
15126 through 15129

15016

Meaning that we are now pointing to address 15016 (through 15019, since we are pointing
at a float), or to variable sqrts[1].

Table 4.5. shows how the program would progress, and what all of the variable values
would be, as we continue through the loop.

Table 4.5.

Pass
Number

Contents of
sqrtsptr

Contents at
*sqrtsptr

(sqrtsptr <=
&sqrts[9])

(*sqrtsptr ==
2.236)

Print??

1 15012 1.000 15012 <= 15048: NO NO NO
2 15016 1.414 15016 <= 15048: NO NO NO
3 15020 1.732 15020 <= 15048: NO NO NO
4 15024 2.000 15024 <= 15048: NO NO NO
5 15026 2.236 15028 <= 15048: NO YES YES

while (sqrtsptr <= &sqrts[9])

/* As long as the contents of address 15126 (location sqrtsptr, which presently contains the
value 15012) are less than 15048 (the address associated with sqrts[9] */

 { if (*sqrtsptr == 2.236)

/* search for value the 2.236. The expression *sqrtsptr means redirect to the address
contained at location sqrtsptr (i.e., 15012) and evaluate the contents of that location (as
a float, since that is how we declared it). The first time that means we should examine
the contents of location 15012 (the address presently contained in location sqrtsptr) to
see if contains the value 2.236. Since we know that address 15012 contains the value
1.000, the statement evaluates to false. That means we will consider the statement
within the if statement: */

 printf("%5.3f found at address %p\n",*sqrtsptr, sqrtsptr);

 / * print out the address ONLY if found. In this case, we skip the command */

 sqrtsptr++; } }

/* which will increment the contents of sqrtsptr (address 15126) by 4 since we defined
sqrtsptr as a location in memory which will contain an address at which we can find the
data type float. Since a float requires 4-bytes of storage, when we increment, we
increment by 4 */

 C/C++ Code 4.9.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

110 Chapter 4: Numeric Arrays

Notice that we did find a match (i.e., the condition *sqrtsptr == 2.236 turned out to be true
in pass number 5) so we printed out the expression4:

printf("%5.3f found at address %p\n",*sqrtsptr, sqrtsptr);

Which yielded the output:

2.236 found at address 15026

The procedure we went through might also help to explain why if we issued the
commands:

We would indeed (for our example) that the new
contents (address) of sqrtsptr would be 15052.

Absolutely no idea. We could figure it out, however, as we did before, if we were to see the
relevant portion of RAM.

Multidimensional Arrays

rrays greater than one-dimension are also stored in RAM in a similar fashion,
although at first glance they seem a little more complicated. Assume that we wished

to store the squares and the cubes of the numbers from 1 to 55. If we were to enter these
values in a table they might appear as (Table 4.6):

4 Notice that in this case, we would have continued checking ALL the elements in the array, eve, if we found
a the number we were looking for. A better conditional check would have been:

while ((sqrtsptr <= &sqrts[9]) && (*sqrtsptr != 2.236))

which would have exited the loop as soon as the value was found.
5 This is obviously a trivial example, since it would be easier to calculate these values when needed.

A

sqrtsptr = sqrts[9];
sqrtsptr++;
printf(“The value %7.3f is located in address %p\n”, *sqrtsptr, sqrtsptr);

 C/C++ Code 4.10.

?���� What about the contents of location 15052, or the value of *sqrtsptr ???

 Do we use pointers in arrays ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 111

 Decimal Number Number Table 4.6.
 Number Squared Cubed Row:

 1 1
 2 2
 3 3
 4 4
 5 5

 Column: 1 2

We could refer to any element in this table by its row and column number. For example,
the value 4 (the square of 2) is located in row2, column 1; the value 256 (the cube of 4) is
located in row 4, column 2. If we were to store these values as a two-dimensional array (a
table) in RAM, it would basically be done in the same manner, although RAM obviously is
not sectioned off into rows and columns. Following the same format as we have been
using, the c declaration would be:

Once again, this statement reserves a section of memory, in this case 20 (contiguous) bytes
of RAM.

Because we have 5 rows each with 2 columns each holding a 2-byte integer (5 * 2 * 2 =
20). In this case, assuming we had 20-bytes of contiguous storage available starting at
address 9500 (and ending at address 9519; see figure 4.8).

Figure 4.8.
9500 9501 9502 9503

00000000 00000001 00000000 00000001
9504 9505 9506 9507

00000000 00000100 00000000 00001000
9508 9509 9510 9511

00000000 00001001 00000000 01010001
9512 9513 9514 9515

00000000 00010000 00000001 00000000
9516 9517 9518 9519

00000000 00011001 00000010 01110001

1
4
9

 16
 25

1
8

81
 256
625

 int numtable[5][2] = {(1, 1), (4, 8), (9, 81), (16, 256), (25, 625)};

 C/C++ Code 4.11.

?���� Why 20-bytes???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

112 Chapter 4: Numeric Arrays

Where: Table 4.7.

Array Offset Decimal Value RAM Address(es) Binary Value
[0][0] 1 9500 (& 9501) 0000000000000001
[0][1] 1 9502 (& 9503) 0000000000000001
[1][0] 4 9504 (& 9505) 0000000000000100
[1][1] 8 9506 (& 9507) 0000000000001000
[2][0] 9 9508 (& 9509) 0000000001010001
[2][1] 81 9510 (& 9511) 0000000001010001
[3][0] 16 9512 (& 9513) 0000000000010000
[3][1] 256 9514 (& 9515) 0000000100000000
[4][0] 25 9516 (& 9517) 0000000000011001
[4][0] 625 9518 (& 9519) 0000001001110001

To put this in more understandable terms, the relevant portion of RAM might appear as
(Figure 4.9):

Figure 4.9.

9500 & 9501 9502 & 9503 9504 & 9505
1 1 4

9506 & 9507 9508 & 9509 9510 & 9511
8 9 81

9512 & 9513 9514 & 9515 9516 & 9517
16 256 25

9518 & 9519 9520 ….
625

Calculating Multidimensional Array Addresses

s we saw with uni-dimensional arrays, these indices (e.g., [0][1], or [3][0]) are really
offset references to the base address of the array (in this case, numtable, or

numtable[0][0], or for our example, address 9500). Conceptually, we apply them as we did
when we referred to the locations in a table by their row and column numbers. The
difference is that instead of starting at row 1 and column 1, we start at row 0 and column 0.
Operationally, however, we use the offsets calculate individual element base addresses. For
example:

A

?���� How do the array offsets work with multidimensional arrays???

 Multidimensional Arrays ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 113

Table 4.9.
Array
offsets

Calculated Address

[0][0] 9500 + (0 * 4 + 0 * 2) = 9500 + 0 + 0 = 9500
[0][1] 9500 + (0 * 4 + 1 * 2) = 9500 + 0 + 2 = 9502
[1][0] 9500 + (1 * 4 + 0 * 2) = 9500 + 4 + 0 = 9504
[1][1] 9500 + (1 * 4 + 1 * 2) = 9500 + 4 + 2 = 9506
[2][0] 9500 + (2 * 4 + 0 * 2) = 9500 + 8 + 0 = 9508
[2][1] 9500 + (2 * 4 + 1 * 2) = 9500 + 8 + 2 = 9510
[3][0] 9500 + (3 * 4 + 0 * 2) = 9500 + 12 + 0 = 9512
[3][1] 9500 + (3 * 4 + 1 * 2) = 9500 + 12 + 2 = 9514
[4][1] 9500 + (4 * 4 + 0 * 2) = 9500 + 16 + 0 = 9516
[4][2] 9500 + (4 * 4 + 1 * 2) = 9500 + 16 + 2 = 9518

The general formula applied is:

Formula 4.2.
element address = base address

 + row reference * (number columns * bytes/element)
 + column reference * bytes/element

where (for our example): base address = 9500
 number columns = 2
 bytes/element = 2 (i.e., the elements are of type integer)

The C/C++ code which we would apply (C/C++ Code 4.11) to search for a number in
memory corresponds to that which we have already seen:

 #include <stdio.h>
 void main()
 { int numtable[5][2] = {(1, 1), (4, 8), (9, 81), (16, 256), (25, 625)}; // initialize
 int i, j; // offset indices
 for (i = 0; i < 5; i++) // set the row parameters
 for (j =0; j < 2; j++) // set the column parameters

 if (numtable[i][j] == 256) // 256?
printf(“Stored in numtable[%d][%d]\n”,i, j); // print the variable offset

 else if (i == 4 && j == 2) // if we haven’t found it
 printf(““The value does not exist\n”); // dnot found message
 }

C/C++ Code 4.12.

?���� What happens if we have more than 2 dimensions???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

114 Chapter 4: Numeric Arrays

The procedures are the same, although the individual element address calculations become
a little more complicated. Although we have trouble envisioning more than 3 dimensions
(e.g., a cube which has height, length, and width), storing the individual elements into
RAM is not a problem. If we were storing information into a 3-dimensional array, we
might make the C/C++ declaration6:

We have a total of 3 * 2 * 2 = 12 elements, each of data type double, which requires 8-
bytes of storage. Therefore, we require 12 * 8 = 96 contiguous bytes of storage in RAM.

In a fashion similar to the manner in which we calculated the addresses for two
dimensional arrays. If we assume that our first available block of RAM is at address 82000
(Table 4.10):

Table 4.10.

Array
offsets

Calculated Address

[0][0][0] 82000 + (0 * 32 + 0 * 16 + 0 * 8) = 82000 + 0 + 0 + 0 = 82000
[0][0][1] 82000 + (0 * 32 + 0 * 16 + 1 * 8) = 82000 + 0 + 0 + 8 = 82008
[0][1][0] 82000 + (0 * 32 + 1 * 16 + 0 * 8) = 82000 + 0 + 16 + 0 = 82016
[0][1][1] 82000 + (0 * 32 + 1 * 16 + 1 * 8) = 82000 + 0 + 16 + 8 = 82024
[1][0][0] 82000 + (1 * 32 + 0 * 16 + 0 * 8) = 82000 + 32 + 0 + 0 = 82032
[1][0][1] 82000 + (1 * 32 + 0 * 16 + 1 * 8) = 82000 + 32 + 0 + 8 = 82040
[1][1][0] 82000 + (1 * 32 + 1 * 16 + 0 * 8) = 82000 + 32 + 16 + 0 = 82048
[1][1][1] 82000 + (1 * 32 + 1 * 16 + 1 * 8) = 82000 + 32 + 16 + 8 = 82056
[2][0][0] 82000 + (2 * 32 + 0 * 16 + 0 * 8) = 82000 + 64 + 0 + 0 = 82064
[2][0][1] 82000 + (2 * 32 + 0 * 16 + 1 * 8) = 82000 + 64 + 0 + 8 = 82072
[2][1][0] 82000 + (2 * 32 + 1 * 16 + 0 * 8) = 82000 + 64 + 16 + 0 = 82080
[2][1][1] 82000 + (2 * 32 + 1 * 16 + 1 * 8) = 82000 + 64 + 16 + 8 = 82088

6 It is possible to initialize a three dimensional array along with its declaration. However, the syntax tends to be
somewhat cumbersome, and confusing to new c programmers.

 double cubetable[3][2][2];

C/C++ Code 4.12.

?���� How much contiguous memory is required for this array???

?����
How would the addresses of the individual elements in array cubetable be

calculated???
?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 115

Notice that the inner-most (the last dimension declared) array gets filled first.

Notice also that RAM is allocated in a linear fashion, even though we conceptually view it
in a multidimensional fashion. We could, for example, make the declaration:

Which would be in six-dimensions7. We know that the array would require:

4 * 5 * 3 * 2 * 6 * 4 * 2 = 5,670 Bytes of contiguous Storage

We need not go into exactly how to calculate each element’s address, other than to say that
the concepts applied above are the same.

Can’t be done, at least not within the definition of an array. Let’s not forget the basic
definition of an array:

An array is a data structure which contains a fixed number of contiguous
storage elements all of the same data type.

However, as we will see (in Chapter 7), there is a data structure which has been developed
for this purpose.

Ways of Declaring Arrays

he c programming language allows for three different array declarations:

Array Declaration #1: Automatic Arrays:

Automatic arrays: � Defined within the function
 (local arrays) � Local to the function in which declared (i.e., references to the

array from other arrays cannot be made).
 � Exist only during the existence of the function
 � Not initialized

7 If you can envision something in six dimensions, you are wasting your time here. Go home: You are a
genius!

T

?����
What happens if we want to mix variable types (for instance, integers and

reals) in the same array???
?

 long manydimensions[5][3][2][6][4][2];

C/C++ Code 4.12.

 How do we calculate their addresses? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

116 Chapter 4: Numeric Arrays

These are the most common types of declarations. For example, consider the following
sections of c code (4.14):

In this example, both array1 and array2 are automatic (local) variables. Variable array1
cannot be referred to from function anadditionalfunction (even though we passed the
address of array1 to array2, which duplicated the values into array2). Similarly, we cannot
refer to array1 from function anadditionalfunction. Because we are passing the address of
the array (array1 in function main and array2 in function anadditionalfunction) we are
calling by reference.

Assume that the base address of the array (in function main, array1) is 78567
(REMEMBER: array1 == &array1[0] == 78567). That means that the array takes up
locations 78567 through 78586 (since we require 2 * 10 = 20 contiguous bytes of storage).
There is one additional address we must consider in the program: array2, which is a
location in RAM which will contain an address at which we expect to find an integer (on 2-
bytes). Let’s assume that array2 is assigned the address 78591 (through 78594). If that is
true, then the relevant portion of RAM (AFTER the call to anadditionalfunction) would
appear as (Figure 4.10):

Figure 4.10.

78567 & 78568 (array1[0]) 78569 & 78570 (array1[1]) 78571 & 78572 (array1[2])
------- ------- -------

78573 & 78574 (array1[3]) 78575 & 78576 (array1[4]) 78577 & 78578 (array1[5])
------- ------- -------

78579 & 78580 (array1[6]) 78581 & 78582 (array1[7]) 78583 & 78584 (array1[9])
------- ------- -------

78585 & 78586 (array1[9]) 78587 78590
------- --- ---

 78591 through 78594 (array2)
 78567

 int anadditionalfunction (int *array2); // function prototype
 void main()
 { int array1[10]; // array1 is an automatic array
 . . .
 anadditionalfunction(array1); // pass array1 to array2
 . . . }

 int anadditionalfunction (int *array2) // the external function
 { . . . }

C/C++ Code 4.15.

?���� How would this appear in RAM???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 117

Notice that the only real piece of information that we pass (to function
anadditionalfunction) is the address of array1. However, as we have stated repeatedly, is
that ALL we need to know is:

1. An address in RAM
2. What type of data is stored at that address

Once we know that information, we can determine the information stored there (just as we
have been emphasizing all along).

Array Declaration #2: External Arrays:

External arrays: � Defined outside the function8
 (global arrays) � Known to ALL functions
 � Do NOT expire (as long as the program is running)
 � Initialized when declared (set to 0 (zero) if numeric; null if
character)

For example, consider the C/C++ Code given in 4.15::

In this case variable array could be reference from any function (including function main).
We could refer to variable array from either main or from function anadditionalfunction,
and access any element in the array (variable array). Note that declaring additional variable
from within either of the functions (functions main or anadditionalfunction, as we did with

8 The c programming language allows for the declaration extern int array[10]; inside a function. This essentially has the
same effect as declaring the array outside of a function.

 int array[10]; // array is a GLOBAL array (available to ALL
 // functions in the program)
 int anadditionalfunction (); // function prototype
 void main()
 { . . .
 anadditionalfunction(); // call to the external function
 . . .
 anadditionalfunction();
 . . . }

 int anadditionalfunction () // the external function
 { . . . }

C/C++ Code 4.16.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

118 Chapter 4: Numeric Arrays

array1 and array2 in the previous example) does not mean that we could make reference to
them from the other functions; they would still remain as automatic (local) variables.

Array Declaration #3: Static Arrays:

Static arrays: � Like automatic arrays, local to the function which declared
them
 � Like external arrays, retain values between calls
 � Like external arrays, initialized at the time of declaration
 (set to 0 (zero) if numeric; null if character)

If we had made the declaration (in function anadditionalfunction) int array2[10];
(automatic) instead of static int array2[10]; any values we established for array2 after the
first pass would have disappeared when we made the second call to the function. Notice,
once again, that since array1 is an automatic array (i.e., local to function main only) we

could not make reference to it from function
anadditionalfunction.

Summary

n this chapter, we introduced the concept of numeric arrays. It is somewhat deceptive to
differentiate numeric arrays from our next chapter (strings) since ALL data stored in

RAM is numeric (including strings), but we have done so because there are a few
additional considerations to keep in mind when dealing with strings.

As mentioned earlier, arrays (including, as we will see, strings) are one of the most
commonly used, and powerful, abstract data structures available to us. They allow for
quick calculation of an address, and therefore allow us to carry out our prime directive:

Give me an address and tell me what type of data is stored there, and
I will tell you the value of that data.

Arrays are still constraining, however. There are two major constraints:

1. ALL elements in an array MUST be of the same data type
2. ALL elements in an array MUST be stored in contiguous locations in RAM

In Chapter 7 we will ease the restrictions on constraint number 1. In Section 3, we will ease
the restrictions on constraint number 2.

I

?���� What’s the difference between static and automatic arrays???

 How do we declare arrays ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 119

Chapter Terminology: Be able to fully describe these terms

& (before variable) Call by Value Pointer Address
* (before variable) Column Offset Pointer Contents
Address Contiguous Storage Row Offset
Address Calculation External Array Static Array
Automatic Array Matrix Subscript
Base Address Multi-dimensional Array Vector
Call by Reference Offset

Review Questions

1. What is the main advantage of an array?
2. What is the main disadvantage of an array?
3. What are the major differences between automatic, static, and external arrays?
4. When I entered the c code:

int myarray[7], *mypointer;
mypointer = &myarray[3];
printf(“%lu %lu”,myarray, mypointer);

 I received the output: 56871 56889
 Looking at RAM, I found:

56868 56869 56870 56871

00001100 00000001 00000000 00000001
56872 56873 56874 56875

00010011 00000100 00000000 00001000
56876 56877 56878 56879

00000000 00001001 00000000 00000001
56880 56881 56882 56883

00001001 00010000 00000001 00000000
56884 56885 56886 56887

11010111 00001010 01110101 11111100
56888 56889 56890 56891

11010110 00000000 00000000 11011110
56892 56893 56894 56895

00101101 00011001 00000010 01110001

a. What would be the output of the statement: printf(“%lu”, &myarray[2]);
b. What would be the output of the statement: printf(“%d”, myarray[7]);
c. What would be the output of the statement: printf(“%d”, *mypointer);
d. What would be the output of the statement: printf(“%lu”, --mypointer);
e. Disregarding the previous question, What would be the output of the statement:
 printf(“%d”, *mypointer); AFTER we issue the statement: ++mypointer;

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

120 Chapter 4: Numeric Arrays

Review Question Answers (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

1. What is the main advantage of an array?

The address of any element in the array can be quickly calculated.

2. What is the main disadvantage of an array?

We must allocate CONTIGUOUS storage in RAM and all of the elements MUST
be of the same data type

3. What are the major differences between automatic, static, and external arrays?

Characteristic\Array Automatic Static External
Defined inside function? YES YES NO

Local to function ? YES YES NO
Values Lost after Return? YES NO NO
Initialized when Declared? NO YES YES

4.a. What would be the output of the statement: printf(“%lu”, &myarray[2]); ??

Since the base address of the array myarray is 56871, then &myarray[2] must be:

56871 + 2*2 = 56871 + 4 = 56875 (since myarray is an integer array).

4.b. What would be the output of the statement: printf(“%d”, myarray[7]);

The address of myarray[7] is: 56871 + 2*7 = 56871 + 14 = 56885.
At address 56885 we find: 0000101001110101 (on 16-bits), which equates to:

211 + 29 + 26 + 25 + 24 + 22 + 20 = 2,048 + 512 + 64 + 32 + 16 + 4 + 1 = 2,677

4.c. What would be the output of the statement: printf(“%d”, *mypointer);

Since mypointer = &myarray[3]; AND the base address of the array myarray is
56871, location mypointer CONTAINS the address: 56871 + 3*2 = 56871 + 6 =
56877.

(Notice also that if we went to location 56889 (location mypointer) we find:
00000000000000001101111000101101 (on 4-bytes or 36-bits) which equates to
56877).

If we REDIRECT to location 56877 we find 1111110011010110 (on 16-bits).
Since the value is negative, we must compliment (assume a two’s compliment
machine):

1111110011010110 => 0000001100101001 (one’s compliment)
 + 1
 1100101010 (two’s compliment)

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 4: Numeric Arrays 121

= -(29 + 28 + 25 + 23 + 21) = -(512 + 256 + 32 + 8 + 2) = - 810

4.d. What would be the output of the statement: printf(“%lu”, --mypointer);

Because (from above) we know that location mypointer contains the address
56877 AND mypointer is a pointer to the data type int, then DECREMENTING
the pointer means that we decrease the value contained at location mypointer by
2-bytes. The new contents of mypointer would thus be: 56877 – 2 = 56875 (the
address of myarray[2]).

4.e. Disregarding the previous question, What would be the output of the statement:
 printf(“%d”, *mypointer); AFTER we issue the statement: ++mypointer;

Given that the original contents of mypointer was 56877 incrementing changes the
address contained to 56877 + 2 = 56879 (the address of myarray[4]). At that
address we find:

0000000100001001 (on 16-bits), which equates to: 28 + 23 + 20 = 256 + 8 + 1 = 265

