
Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

73 Chapter 2: Allocating Variables to RAM

CHAPTER 3:

ALLOCATING VARIABLES TO RAM

 “All things begin in order, so shall they end”
Thomas Browne (1605 - 1682)

Introduction

ata structures are really nothing more than logical implementations of physically
stored data. Therefore, understanding data structures assumes an awareness of how

data types are stored in Random Access Memory (RAM). This chapter is intended as a
(very) brief (and simplistic) description of how the basic data types are stored in RAM.

There is a simple axiom which we apply throughout this text:

Give me an address and tell me what type of data is stored there, and I
will tell you the value of that data type.

This axiom applies to ALL data types. In fact it is the essence of programming. In the first
generation of software (machine level), it was the programmer’s responsibility to assign in-
structions and data to specific addresses in RAM (in binary, of course). In later generations
of software, through the use of mnemonics and variables, it no longer became necessary to
keep track of ‘true’ memory locations. But the basic functioning of the computer has not
really changed. Whenever we make reference to a variable, we still are referring to some

D

 ��								

��������������������������������								

������������������	���
������������
 ���������������������� �����
 �������������������������
��

 �������������������������
������ 	���������� ����� ��������

� 	������������������������
����������������������
� ����	������	����������������
� 	����������������
� 	�����������������������

����������������������� ����
� �	��� ������������

C

H
 3

????���� How important is this?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 74

��������������������	���
����������� ���� �

�������������������������������������� ���� �

address in memory, even though we do not know what address that is (unless we ask the
program to tell us the address).

Storing Characters in RAM

p to this point in time, we have described three simple data types: Characters (char),
Integers (int), and real numbers (float).

As we have already seen, characters are generally stored as signed whole numbers, as are

integers, BUT they only require 8-bits of storage and can therefore take on
the values from -28 to +28 – 1 (or –127 to +128). Therefore, when we
declare a character variable, we are really requesting that 8-bits (1 byte) of

storage be set aside for our use.

Consider, for example, the following C/C++ declaration:

We are really issuing a command to set aside 3-bytes
(24-bits; 8-bits for each variable) of RAM where we
can store the values of a1, b, c. Additionally, we are
instructing the compiler to store the value ‘G’ (or the
numeric value 71) at location b, and the value 103
(or the ASCII character ‘g’) at location c.

That depends on where there is space available. Don’t forget, much the total space
available has already been allocated for the Operating System, the c program which you are
running, the environment in which it is running, and any other programs you might have
previously placed into RAM. The actual location assignment will be made at run-time.

Possibly, but not necessarily. If contiguous space is available, then probably so. But if not,
then they will be assigned wherever space is available.

For the sake of our illustration, let’s assume that there is space available at addresses2,3
100, 101, and 105 (and that locations 102, 103, and 104 are presently being used for some

1 When we refer to variables or c code in the body of the text, we will use italics. Reserved words in C will be boldfaced.
2 These addresses are obviously made up. In fact, even a ‘low-level’ operating system would consume the first (lower)
64K of RAM; Windows-95/98 would consume the lower megabytes of RAM. Beyond that, the program would be stored
in RAM before any variable assignments are made.
3 Allocated areas are boldfaced

U

 char a, b = ‘G’, c = 103;
C/C++ Code 3.1

????���� Where in RAM will it be stored??

????���� Will the locations assigned be contiguous (i.e., right next to each other ??

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

75 Chapter 2: Allocating Variables to RAM

������������������������������������� ���� �

other purpose). The statement we made in c coded 3.1 (char a, b = ‘G’, c = 103;) might
associate variable a with location 100, b with location 101, and c with location 105. If we
could actually look at that section, we might see:

Figure 3.1
 Address:
 Contents:

In some programming languages, if a character variable (or any other type of variable, for
that matter) is assigned to an address, the address is initialized to ‘00000000’. Not in c.
Whatever data was in that location previously remains there. It may be that location 100
previously contained a character. In that case, location 100 held the character ‘6’ (since
001101102 = 610 = ‘6’). Of course, it may be that location 100 (and 101) previously held an
integer variable (int), which means that all we see are the 1st 8-bits of a value which was
stored on 16-bits. Then again, perhaps location 100
(through 103) held a long data type, or a float. We have
know idea of what was previously stored there.

Remember, we issued the command char a, b = ‘G’, c = 103; which means that not only
did we request 1-byte of storage for the (character) variable b, but we also initialized the
variable with the value ‘G’. In reality, we ordered that the character ‘G’ be stored at
location 101. Therefore, the numeric value 71 (7110 = 1101102), which corresponds to the
ASCII character ‘G’, was stored.

Similarly, address 105 contains the numeric value 103 (10310 = 11001112) which
corresponds to the ASCII character ‘g’.

Notice that since only 8-bits are allocated for characters, only 256 (= 28) values are
available. Because in c, the data type char, by default, is the same as the data type signed
char, the legal values which can be assigned range from -27 to +27 - 1, or -128 to +127.

Again, in some programming languages, the program would either not compile (if the
value was entered in the source code), or would generate an error when running. Not in c.
The c language will accept these values, and try to place their binary equivalents in the 8-

00010101 10010000 00110110 00110110 01000111 00011000 01100111
099 104 100 101 102 103 105

????���� Variable a, which we associated with address 100, was not initialized. Why is
there something in address 100?

????���� Exactly what is in address 101??

????���� What would happen if an illegal decimal value, such as 320 or -150, were
entered??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 76

bits available, according to what we know about
how values are stored, but strange things can
happen.

Take for example the integer 320. Because the
largest number which can be stored is 255,
entering anything larger will cause an overflow. Given that the number 32010 =
1010000002 (using 9-bits; 010000002, using 8-bits, and 0000000101000000 using 16-
bits), only the last 8-bits will be stored (010000002 = 6410), which corresponds to the
ASCII character @.

Assigning the value 320 actually turns out to be a simple example. A more difficult one is
trying to store the number 230, for example. The number 23010 = 111001102 requires 8-bits
of storage. If we store this number on the 8-bits available, however, it will appear to be a
negative number (since the first bit is ‘1’). The value 111001102 will be interpreted as the
binary number110102 (see Calculation 3.1.) which equates to the decimal value -26 (= -24
+ -23 + -21= -16 + -8 + - 1). This, of course, is interpreted as the ASCII character ‘µ’ which
corresponds ASCII 230.

Yes, it does initially seem bizarre. In the c programming language, even though the value is
stored as -2610, printing the character value -2610 as a character would in fact print the
ASCII character ‘µ’, which is ASCII 230. When converting to ASCII characters (using the
“%c” format), the entire 8-bits are considered on an unsigned basis. If we were to attempt
to print out the decimal value (using the “%d” format), however, we would find that the
value is indeed -2610. It is just one of the quirks which c programmers must get used to.

Determining how -150
would be stored also
requires the application of
what we have learned about
storing negative integers,
although it is a little more

straightforward. For example, the number 15010 would be stored as 0,0000000100101102
(using 16-bits). Using two’s complement, the number would be stored as
1111111101101010

Once again, if we consider only the lower 8-bits, the numeric value 011010102 = 10610
would be stored. If we check the ASCII tables, we find that this corresponds to the
character ‘j’.

 Calculation 3.1.

 11100110 � Binary Value Stored
 0011001 � One’s Compliment
+ 1
 0011010 � Two’s Compliment

 Calculation 3.2.
 0,000000010010110 � Binary of 15010
 1,111111101101001 � One’s complement of 15010
+ 1
 1,111111101101010 � Two’s complement of 15010

????���� This is crazy. This makes no sense at all. What Gives??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

77 Chapter 2: Allocating Variables to RAM

����������������������������������� ���� �

One more note about the data type char in c. The c programming
language allows for an unsigned char data type. As with other unsigned
data types, this means that the legal values which can be assigned are 0 to
28 - 1, or 0 to 2554.

Not much, really. However, it circumvents the confusion which we experienced, for
example, when we tried to assign the value 23010 to a variable. If we had declared the
variable type unsigned char ch, and assigned the value 230 to it (ch = 230;), attempting to
print out the decimal value (printf(“%c”,ch);) would yield the value 230; printing the
ASCII character equivalent (printf(“%c”,ch);) would still yield the outcome ‘µ’.

In the previous chapter’s C Programming Assignments, we provide some source code
which illustrates some of the issues we have been describing. Try running them. Change
the values we have given. It might even be fun. It will definitely illustrate the concepts
discussed above.

A string is actually an abstract data type, although some programming languages make it
seem as if they are basic data types. We will discuss strings in Chapter 5.

Storing Integers (the data type int) in RAM

he only difference between the way characters and
integers are stored in RAM is that integers (data

type int) require 2-bytes (16-bits) of storage. Assume
that we make the c program declaration:

While this statement superficially appears to be the same as our previous (character)
declaration note the differences:

1. We have declared the variables a, b, and c as integers (data type int), meaning that they
require 2-bytes (16-bits) of storage each.

2. We are requesting a total of 6-bytes (48-bits; 16-bits per variable) be set aside in RAM
at locations a, b, and c.

4 In some programming languages, such as Pascal, this data type is a numeric byte

T

 int a, b = ‘G’, c = 1543;
C/C++ Code 3.2

????���� What’s the advantage??

????���� What about strings, or collections of characters??

Differences Between Character and Integer Declarations

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 78

This time, assume that locations 100, 101, 102,
105, 106, 110, and 111 are available (i.e., 104,
107-109 are being used), as shown in Figure 3.2.
In this case, variable a will be assigned address
100 (and 101), variable b will be assigned address
105 (and 106), and variable c will be assigned address 110 (and 111), and initialized with
the value 1,543.

True, but integers require 2 contiguous bytes of memory. Because address 103 is not
available, the value of b can not begin in address 102.

This time, if we could look inside the relevant section of RAM, after the variable locations
have been assigned, we might see the ‘donuts’ set according to the layout in Figure 3.3.

 Figure 3.3.
Address: 100 101 102 103 104 105 106
Contents: 11010101 01110100 00110110 01000111 00011000 00000000 00110110
Address: 107 108 109 110 111 112 113
Contents: 01100111 01110111 00111111 00000110 00000111 00110000 00000000

Remember, integers require 2-bytes of contiguous storage. We could not, for example,
place part of the integer in location 100, and the other part in location 104. This holds true
for all basic data types. Real numbers (data type float) must be placed in four contiguous

bytes, data type double requires eight contiguous bytes, and so forth.
Further, when we refer to a variable’s address, we will refer to its base
address, meaning the location at which that variable starts.

 Figure 3.2.
100 101 102 103 104 105 106

 Available In Use Avail.
106 107 108 109 110 111 112

 In Use Available

????���� Why won’t variable b be assigned address 102? It’s available and it is the next
one on the list.

????���� Why is variable a assigned addresses 100 and 101??

????���� Does variable a (location100 and 101) also have a value associated with it??

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

79 Chapter 2: Allocating Variables to RAM

��� ���� �

Yes, even though we have not (yet) stored
anything there, whatever was previously
stored there is still there. Because we
declared that we expect to find the data type
int there, when we analyze locations 100 and
101 (variable a), we find that it contains a
negative integer. Consequently, if we were to
attempt to print out the contents of the
location, we would first have to compliment
it, and then evaluate. When we do, we find
the integer value -10,892.

Of course, it is possible that location 100 previously contained a character, as did location

101. In that case, prior to running our program, location 100
contained the numeric value -4310 (or the ASCII character ‘∏’),
and location 101 contained the numeric value 11610 (or the
ASCII character ‘t’).
Of course, it could be
that location 100 previously contained a character, and locations

101 and 102 contained an integer (01110100001101102 = 29,75010), or perhaps locations
100 through 103 previously contained the data type float. Or it could have been some other
combination. We have no way of knowing.

Why not? Remember, the ASCII character ‘G’ is nothing more than the numeric value 71
(7110 = 1101102). The only difference is that integers require 16-bits, and hence the value
1101102 is stored as 00000000001101102 (with 00000000 in address 105 and 00110110
stored in address 106).

We could also print out an
integer as a character. For
example, we know that variable c (stored at addresses 110 and 111)
contains the value 1543. When we try to print it as a character, we in
fact look at the rightmost 8-bits, determine the numeric value stored
there, and then print out the corresponding ASCII character. In this

case, of course, the Bell would ring (check your ASCII Tables).

100 101 Figure 3.4.
11010101 01110100

���� ���� Compliment
0101010 10001011 1’s Compliment

+ 1
101010 10001100 2’s Compliment

 = -(213+ 211 + 29 + 27+ 23 + 22)
= -(8,192 + 2,048 + 512 + 128 + 8 + 4)

 = -10,892

101
01110100 =11610 =‘t’

100
11010101 = -4310 = ‘∏∏∏∏’

Figure 3.6.
110 111

00000110 00000111
 ����
= 22 + 21 + 20
= 4 + 2 + 1 = 7

????���� How can the character ‘G’ be assigned to the integer variable b?

 printf(“%c”, c);
C Code 3.3

Figure 3.5.

????���� What happens if we assign illegal values, for example the values 45,250 or
-50,000, to any of the integer variables?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 80

�������������� 	����������������� ����� �������� ���� �

Basically, the same thing that happened when we tried to store
illegal character values at our character locations. Assume we tried
to store the value 45,25010 (=10110000110000102) at location a
(See Figure 3.7.). Since the first bit is ‘1’, the number would appear
to be negative. To evaluate, we would first
take the two’s complimented number
(0100111100111101 + 1 =
0100111100111110) and then determine that
the value is -20,28610 is stored. A similar
situation would occur if we tried to store the
value -50,00010 at location a (See
Calculation 3.3.) Since the value 50,00010 =
11000011010100002 then
to store -50,00010 we first
need to compliment. The
2’s complimented binary equivalent would be stored as
00111100101011112 + 12 = 00111100101100002. After evaluation,
we find that the value stored is actually 15,53610.

Storing Other Integer Types in RAM

emember, the c programming language allows for additional integer
data types. Remember also that we are talking about the PC. On a

mainframe, the data type long, for example, may use 64-bits, and therefore
take on much larger values.

1. unsigned integers. This allows the storage of all values from 0 to 65,535 (216 - 1)
2. longs. This allows the storage of all integers from -2,147,483,648 to 2,147,483,647

(-231 to 231 - 1)
3. unsigned longs. This allows for the storage of all values from 0 to 4,294,967,296

(232 - 1)

Basically, the same as integers,
except that we never have to
worry about complimenting.

Figure 3.7.
100 101

10110000 11000010
���� ����

1001111 00111101
+ 1
1001111 00111110

 = -20,28610

 Calc. 3.3.
11000011 01010000

���� ����
0111100 10101111

+ 1
0111100 10110000

= 15,536610

Figure 3.7.
100 101

10110000 11000010
 = 215 + 213 + 212 + 27

 + 26 + 21
= 32,768 + 8,192
 + 4,096 + 128
 + 64 + 2
= 45,25010

R

????���� What if I really need to store integer values such as 45,250 or -50,000, or
values even greater??

Additional Integer Data Types in C

????���� How are unsigned integers stored in RAM ??

 unsigned int a, b = ‘G’, c = 1543;
C Code 3.4.

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

81 Chapter 2: Allocating Variables to RAM

For example, suppose we issue the declaration given in C Code 3.4. This declaration is
basically the same as the code in 3.2., except that we are declaring the variables to be of
type unsigned int. If we further assume that the same addresses are assigned to each of the
variables (see Figure 3.3.), then the only difference will occur when we examine the value
associated with variable a (which is not initialized). As we saw, when we declared a to be
of data type (signed) int, the value -10,892 was stored at this address. This time, we would
find that the value 45,25010 is stored at location a.

The data type long corresponds to the same rules as the data type int (whether signed or
unsigned), except that it requires 4-bytes (32-bits) of contiguous storage per variable. As
with the data type int (and the data type char) a long variable is signed by default.

Consider the C Code:

This is a legal value for the data type long which can take on values between –231 to +231 –
1 (or –2,147,483,648 to +2,147,483,647). In binary, 423,57510 =11001110110100101112
on 19-bits or 00000000000001100111011010010111 on 32-bits. If we found that address
500 were available (which also means that addresses 501, 502, and 503 must also be
available), the relevant portion of RAM might appear as:

Figure 3.8.

 Address:
 Contents:

= 218 + 217 + 214 + 213 + 212 + 210 + 29 + 27 + 24 + 22 + 21 + 20
= 262,144 + 131,072 + 16,384 + 8,192 + 4,096 + 1,024 + 512 + 128 + 16 + 4 + 2 + 1
= 423,575

All of the other considerations which we applied to characters and integers also apply:

If we attempt to store a negative long integer, or if we find that the left-most bit (in this
case, the 31st bit) is ‘1’ in a binary representation, , we must compliment the other 31-bits
to determine the value of the integer.
1. If we attempt to store values which require more than 32-bits to represent, the

rightmost 32-bits will be stored.
2. If we attempt to print out a long variable as the data type int, only the rightmost 32-bits

will be considered.
3. If we attempt to print out the data type long as a character, only the rightmost 8 bits will

be considered.

 long d = 423575; C Code 3.5.

11010101 10010111 01110100 00000000 00000110 01110110 01100111
498 503 499 500 501 502 504

????���� How is the data type long stored in RAM ??

long variable Considerations

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 82

That depends. Don’t forget, there is the data type unsigned long, which would allow you to
store integers in the range 0 to 232 – 1, or 0 to 4,294,967,295. However, if larger values are
needed, or negative values are needed, we must store them as floating-point (real) numbers
using the data type float. This probably means, how-
ever, that we will lose some level of precision.

Storing Floating-Point Numbers in RAM

s we saw in Chapter 2, floating
point numbers in the PC require

32-bits of contiguous RAM storage,
and are generally (not universally) arranged according to the layout in Figure 3.9.

Because we did not (intentionally) go
over conversion of floating-point
numbers into binary, true
representation in RAM is difficult. However, if we were to make the statement shown in C
Code 3.6, and we found that the base address of variable myfloat were actually 1250, and if
we were to look at RAM (see Figure 3.10.), we would interpret the sequence of bits we
found according to the layout given in Figure 3.9. (1-bit
sign, 7-bit Characteristic of the Exponent, and 24-bit
mantissa).

Figure 3.10
 Address:
 Contents:

 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1

 Mantissa
 Characteristic of the Exponent
 Sign (positive)

 Figure 3.9.
1-bit Sign 7-bit Exponent 24-bit Mantissa A

11010101 10010111 00010111 00001011 01110001 00011101 01100111
1249 1254 1250 1251 1252 1253 1255

????���� What if I need even larger values ??

As we noted in Chapter 2., we are taking some liberties in describing the data type float
(and double, and long double) for the purpose of simplification. Interested students are
advised to refer to Addendum 2.1.

CAVEAT

 float myfloat; C Code 3.6.

� 	������������������������ ���� �

�������������������������� ���� �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

83 Chapter 2: Allocating Variables to RAM

Again, storage corresponds to the manner in which we defined the bit patterns. Since this
varies from package to package, we can’t be sure. The main differences, however, are:

1. The data type float (single precision real) requires 4 contiguous bytes (32-bits) of
storage.

2. The data type double requires 8 contiguous bytes (64-bits) of storage. ANSI C requires
a minimum of 10 digits of precision, meaning that at least 34-bits must be assigned to
the mantissa (leaving a maximum of 31-bits to the characteristic).

3. The data type long double requires 16 contiguous bytes (128-bits) of storage. ANSI C
requires a minimum of 10 digits of precision, meaning that at least 34-bits must be
assigned to the mantissa (leaving a maximum of 53-bits to the characteristic).

There is one other data type that we frequently store in
RAM.

Storing Addresses in RAM: An Introduction to Pointers

t may seem like a strange concept at first, but in the c programming language, not only
are variable values stored in RAM, but RAM addresses are themselves stored. Addresses

are stored in a variable type called a
pointer. A pointer, just like every other
data type, is a location in RAM.

As we have seen, everything is stored in RAM. If we want to manipulate data, we need to
be able to access it directly, which means determining its address. Once we know an
address (and the type of data contained in it), we can readily access it and, if we wish,
change it. This corresponds to our original adage Give me an address, tell me what type of
data is stored there, and I will give you the value of that data.

This also brings us to another programming distinction which must be made: Call by
Reference vs. Call by Value. When we pass variable values between functions in c, we can
either pass the contents of some location in memory (call by value), or we can pass the
address which contains the data (call by reference). If we
call by value, the contents of the address can not be
changed. If we call by reference, we can change whatever

I

????���� What about the other real data types??

Storing floating-point numbers in C

????���� Why??

�� ����	������	�������������� ���� �

�������� 	���������������� ���� �

� 	���������������������� ���� �

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 84

is stored at that address.

Let’s take a look at two simple c programs, which may look as if they perform the same
tasks, but in fact, operate quite differently. In both cases, we will pass an integer variable
(variable number in function main) to function multiply, which will place it in location
numb, and multiply it by 5. In c Code 3.7., we will pass the contents of the variable. In c
Code 3.8., we will pass the address of variable number. To help illustrate the differences
between the two programs, we will print the value of the variable (number) before we pass
it, after we pass it to the function, after the function manipulates it, and after the function
transfers control back to the main function.

The output from the C Code 3.7. would be:

Notice that the original value (6 in function main) is correctly received by function
multiply (“In Function multiply, the initial value passed is 6”). The variable number (in
function multiply) is correctly received (“In Function multiply, the initial value passed is
6”), and is also changed correctly (“In Function multiply, after multiplying by 5, the value
is 30”). However, when control is returned to main, we see that the original value has not
been changed (“After returning from function multiply, the value of number is 6”).

 // C program 3.7: Call by value
 #include <stdio.h>
 void multiply(int numb); // function prototype

 void main()
 {
 int number = 6; // #1: this is location number in function main
 printf("Before calling function multiply, the value of number is %d\n", number);
 multiply(number);
 printf("After returning from function multiply, the value of number is %d\n", number);
 }

 void multiply (int numb) // #2: this is location num in function multiply
 {
 printf("In Function multiply, the initial value passed is %d\n", numb);
 numb = numb * 5;
 printf("In Function multiply, after multiplying by 5, the value is %d\n", numb);
 }

 C Code 3.7.

Before calling function multiply, the value of number is 6
In Function multiply, the initial value passed is 6
In Function multiply, after multiplying by 5, the value is 30
After returning from function multiply, the value of number is 6

C Code 3.7. Output

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

85 Chapter 2: Allocating Variables to RAM

Let’s see how data was stored in
RAM and what happens to it. Let’s
assume that addresses 34000 to
35000 are available to us. If that is true, then in function main, we can assign base address
34000 (meaning addressess 34000 and 34001) to variable number. In function main, when
we issue the command int number = 6; we are placing the value 610 (1102) in location
34000, and RAM would appear as it does in Figure 3.11.

Now when we issue the
command multiply(number); we
are passing the contents of
address 34000 (variable number) and placing them into location numb (let’s assume integer
variable numb will be assigned the base address 34002. RAM would appear as it does in
Figure 3.12.

After we issue our command
numb = numb * 5; we will change
the contents of location 34002
(and 34003), or variable numb. We have not altered the contents of 34000 (and 34001), so
that when we return control to function main, variable number will still the value 6. RAM
will appear as it does in Figure 3.13. after the multiplication and after our return. The only
difference, of course, is that we can no longer access addresses 34002 and 34003 once we
return to function main, any more than we could access variable number when we
transferred control to function multiply.

The problem is that we do not know the address of variable numb when function main has
control of execution, nor do we know the address of variable number when we transfer
control to function multiply. When we call a function, all
of the variables are assigned addresses at the time of the
call, not before.

Yes and no. It does require a little more effort to assign function variables each time we
call the function. On the other hand, it does make efficient use of RAM since when we
leave a function, the RAM that was being used is freed-up for use by other functions.

 Figure 3.11.
34000 34001 34002 34003 34004 34005

00000000 00000110 01001011 11000101 0111010 11110100

 Figure 3.12.
34000 34001 34002 34003 34004 34005

00000000 00000110 00000000 00000110 0111010 11110100

 Figure 3.13.
34000 34001 34002 34003 34004 34005

00000000 00000110 00000000 00001111 0111010 11110100

????���� What happened??

????����
Why can’t we access variable number from function multiply, or variable numb

from function main?? We have been working under the axiom “Tell me an address,
and the type of data stored there, and I will give you the value of that data”

????���� That seems like a lot of work. Isn’t it??

����������������������� ���� �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 86

By default, variables in C are local or automatic variables. It is possible to
declare variables whose addresses are available to all the functions in a
program (although it isn’t considered good form). C allows for three
different types of variable declarations:

1. Automatic Variables: � Declared INSIDE a function
 � Exists ONLY for the duration of the function

� When done, memory allocation freed

2. External Variables: � Declared BEFORE the function main
 � Known to ALL functions
 � Do Not Expire when a particular functions ends
 � Initialized when declared

3. Static Variables: � Like Automatic Arrays, local to the function
� Like an External array, retains values between calls & is

initialized at declaration
� Declared with the reserved word static before the data

type declared (e.g., static int a;)

In the case of call by reference, we are passing the address which contains the data we

wish to manipulate. Whatever changes we make to the data will be stored
in the original location. This could be done in a number of ways; the
(slightly modified) c program (see C Code 3.8.) illustrate one manner of

passing an address. The output is given in C Code 3.8. Output.

There is one new variable type in this program. Some texts refer to it as a new data type, al-
though actually, it is the data type integer with a slight variation (we won’t go into this
now). It is the variable type pointer, and it is declared as int newnumber (in our function
prototype and the function multiply itself). In this statement, the asterisk (*) in front of ythe
variable name newname indicates that location newname will store an address, and the use
of the reserved word int indicates that we expect to find the data type integer stored at that
location.

Variable Classes in C

????���� You mentioned Call by Reference before. How is that different??

 DDeeff

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

87 Chapter 2: Allocating Variables to RAM

A pointer consists of three components:

1. A variable (which we know is actually a location in RAM) which will store an
address5

2. The address to be stored (which is stored on 4-bytes of RAM), and
3. The data type which will be stored at that address

When we make the reference int *newnumber we are stating that variable (location) new-
number will hold the address of an integer (in this case, the address of variable number)

Notice that the MAJOR difference in the output (from the call by value program (i.e., C
Code 3.7.)) is in the last line of output produced. Previously, we produced the output:

5 In older DOS versions, pointers required 2-bytes of RAM (near pointers). In Windows 95/98 based environments,
addresses require 4-bytes of storage. Further, addresses generally require 2 components: a data segment, and the data
segment offset. However, rather than get into a lengthy discussion of segments and offsets, we will assume that pointers
are stored as unsigned long data types (on 4-bytes of storage). This also corresponds to our assertion that data is usually
corresponds to the high-end of memory (and allows to use larger address numbers).

 // C Program 3.8: Call by reference
 #include <stdio.h>
 void multiply(int *newnumber);

 void main()
 {
 int number = 6;
 printf("Before calling function multiply, the value of number is %d\n", number);
 multiply(&number);
 printf("After returning from function multiply, the value of number is %d\n",
number);
 }

 void multiply (int *newnumber)
 {
 printf("In Function multiply, the initial value passed is %d\n", *newnumber);
 *newnumber = *newnumber * 5;
 printf("In Function multiply, after multiplying by 5, the value is %d\n", *newnumber);
 }

C/C++ Code 3.8.

Before calling function multiply, the value of number is 6
In Function multiply, the initial value passed is 6
In Function multiply, after multiplying by 5, the value is 30
After returning from function multiply, the value of number is 30

Pointer Components

C Code 3.8. Output

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 88

 After returning from function multiply, the value of number is 6

Whereas now, we produced the output:

After returning from function multiply, the value of number is 30

In the first case (call by value), we DID NOT change the contents of location (variable)
number (address 3400). In the second case (call by reference), we DID change the contents
of location number.

Let’s once again track the
changes each of the commands
make to the way the RAM
would appear. Up until we call the function multiply, RAM would appear exactly as it did
before (we duplicate the appearance in Figure 3.14., although it appears the same in Figure
3.11)

This time, when we call function multiply, we pass the address at which we will find our
integer value (i.e., the base address 34000).

Essentially, that is exactly what we are doing. Remember, a variable is merely a location in
RAM. When we pass the address we are indicating where that address is. Remember also,
we can not refer to variable number from any function except main, so really we are just
finding away to get around that.

The expression &number (used in function main) means the address of variable number
(in our case, address 3400). Placing an ampersand (&) in front of any variable name
implies that we are referring to the address at which we storing our data, NOT the data we
will find there.

Note also that an address is a constant term, meaning we can not change its value (anymore
than we can change the address of the house we live in; we can change our home address,
but only if we move. The address of the house remains the same. We pass the address of
variable number (using the expression &number) to function multiply, which receives it
into an integer pointer newnumber (expressed as *newnumber).

 Figure 3.14.
34000 34001 34002 34003 34004 34005

00000000 00000110 01001011 11000101 0111010 11110100

????���� How do we pass an address??

????���� Integer Pointer newnumber ??? What does that mean ???

????���� Why don’t we just pass the variable number??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

89 Chapter 2: Allocating Variables to RAM

Remember, it is insufficient to
merely pass an address without
indicating what type of data we
expect to find there. When we pass the address 34000 to function multiply (placing it at
address newnumber, which we assume will be assigned the base address 34002 (through
34005, since it requires 4-bytes of storage)), we are also indicating that address 34000 will
contain an integer (which it does, the variable number). After we pass the address, RAM
might appear as it does in Figure 3.15. If we analyze the contents of location newnumber,
we find that we have stored the integer value 3400010 (= 10000100110100002) there6.

In function multiply, we wish to manipulate the integer 6 (which we know is stored at
address 34000), and NOT the address 34000. Therefore we need to apply some new
notation. We need to go to the address contained at location newnumber to do our
calculations, or we need to redirect to that address. In C, we redirect by
placing the symbol * in front of the pointer variable. In this case, the
command *newnumber implies that we wish to manipulate the integer
which we expect to find at location 34000.

When we issue the command:
*newnumber = *newnumber * 5;
we are really ordering that the
contents of the address contained in variable newnumber be multiplied by 5, and the result
stored at the address stored in location newnumber. In other words, go to address 34000
multiply the integer we will find there by 5 (yielding 30), and place the result back into
address 34000. At the end of the operation, and after we return control to function main,
RAM would appear as it does in Figure 3.16.

Notice that this time, we did actually alter the contents of variable number in function
main.

We know that pointers are (at first) very confusing. In point of fact, we do not expect you
to fully understand them right away.

This was an introduction to pointers. You will be seeing them more and more from now
on. By the time we get to Sections 3 and 4, essentially ALL of the data structures
introduced will rely on pointers. Get used to it.

6 We are ‘cheating’ a little here. See the previous footnote.

 Figure 3.15.
34000 34001 34002 34003 34004 34005

00000000 00000110 00000000 00000000 10000100 11010000

 Figure 3.16.
34000 34001 34002 34003 34004 34005

00000000 00011110 00000000 00000000 10000100 11010000

????���� Why are we going over this now??

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 90

Determining Pointer Contents

he c programming language allows us to print out the addresses at which we store our
variables the use of the %p print specifier (see C Code 3.7.) The p specifier prints the

input argument as a pointer; the format depends on which memory model
was used. It will be either XXXX:YYYY (base segment: offset) or YYYY
(offset only). Consider the code given in C Code 3.9.

The output from this program might appear as7:

The output actually consists of two components: the base segment address and the offset
are given in hex (we are not about to go into too much detail at this time). The base
segment address refers to that portion of RAM where the data is stored; the offset refers to
how far into that portion of that segment a particular piece of data can be found. Notice,
that the complete address does consist of 4-bytes (32-bits) since each component requires
16-bits or 2-bytes (the largest value FFFF16 = 6553510 = 11111111111111112). For the
sake of clarity, if we converting the hex addresses to decimal, we would find:

7 This is the actual output from a run; the addresses obviously vary each time the program is run.

T

 #include <stdio.h>
 int main()
 {
 char ch1, ch2;
 int int1, int2;
 long long1, long2;
 float float1, float2;
 double double1, double2;
 printf("character addresses: %p %p\n", &ch1, &ch2);
 printf("integer addresses: %p %p\n", &int1, &int2);
 printf("long addresses: %p %p\n", &long1, &long2);
 printf("float addresses: %p %p\n", &float1, &float2);
 printf("double addresses: %p %p\n", &double1, &double2);
 }

C Code 3.9.

character addresses: 1C57:0FFF 1C57:0FFE
integer addresses: 1C57:0FFC 1C57:0FFA
long addresses: 1C57:0FF6 1C57:0FF2
float addresses: 1C57:0FEE 1C57:0FEA

C Code 3.9. Output

 DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

91 Chapter 2: Allocating Variables to RAM

character addresses: 7255:4095 7255:4094 (1-byte per variable)
integer addresses: 7255:4092 7255:4090 (2-bytes per variable)
long addresses: 7255:4086 7255:4082 (4-bytes per variable)
float addresses: 7255:4078 7255:4074 (4-bytes per variable)
double addresses: 7255:4066 7255:4058 (8-bytes per variable)

Notice that (this time), the variables were allocated to RAM in a contiguous fashion
(although in reverse order - from highest to lowest). If we were to look in memory, we
would find that the variables were allocated as (substituting offset addresses as actual
addresses):

Figure 3.17.
4058 4059 4060 4061

 Variable double2 (through address 4065)

4062 4063 4064 4065

4066 4067 4068 4069
 Variable double1 (through address 4073)

4070 4071 4072 4073

4074 4075 4076 4077
 Variable float2 (through address 4077)

4078 4079 4080 4081
 Variable float1 (through address 4081)

4082 4083 4084 4085
 Variable long2 (through address 4085)

4086 4087 4088 4089
 Variable long1 (through address 4089)

4090 4091 4092 4093
Variable int2 Variable int1

4094 4095
Variable ch1 Variable ch2

Transformed C Code 3.9. Output

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 92

Summary

n this chapter, we have tried lay down the foundations for understanding data structures.
All data structures are simply logical implementations of physical data stored in RAM.
The mechanics of implementing data structures are performed by the c compiler, but

unless we have some idea of the data it is working with, the probability of misusing a data
structure increases.

We have seen how the various data types are stored in RAM. While the computer groups
data together on 8-bits, it makes no attempts to try and make any meaning of what it stores;
that is also the function of the c compiler. It is for that reason that we can make mistakes
which will produce results, sometimes obvious, and sometimes subtle. In order to detect
these mistakes, we need to be aware of the types of mistakes which can be made, and how
we can go about preventing them.

This concludes our section on fundamental concepts. The material covered here, if
understood, should be more than enough to carry the student through the subsequent
sections of the text. Confusion about these basic concepts, however, may lead to
difficulties in understanding the following sections. For this reason, we strongly suggest
that the student contact their instructor for any clarifications which might be needed.

In the following chapters, we will introduce a number of new abstract data structures.
However, we will still make reference to the physical storage of data in RAM in order to
show how the structures are applied, and how their misuse can be avoided.

Chapter Terminology: Be able to fully describe these terms

Address Data segment offset Integer storage
Automatic variables Double addresses Location contents
Call by reference External variables Long addresses
Call by value Float addresses Long double addresses
Character addresses Floating-point storage Pointers
Character storage ‘Garbage’ Random access memory
Contiguous space Initialization Redirection
Data segment Integer addresses Static variables

I

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

93 Chapter 2: Allocating Variables to RAM

Review Questions

1. How many bytes of contiguous storage are required for each of the following c data

types:
a. char d. int
b. double e. long
c. float f. long double

For the following question, assume that RAM appears as given in figure 3.18:
2. Suppose that we find that the following variables can be associated with the given

locations in RAM (note: this is a 2’s compliment machine):
 Variable data type RAM location

 vara char 4060
 varb char 4063
 varc int 4065
 vard signed int 4068
 vare unsigned int 4072
 varf long 4077
 varg unsigned long 4084

 a What is the decimal value of vara? g. What is the decimal value of
vard?
 b. What is the ASCII character for vara? h. What is the ASCII character for vard?
 c. What is the decimal value of varb? i. What is the decimal value of vare?
 d. What is the ASCII character for varb? j. What is the ASCII character for vare?
 e. What is the decimal value of varc? k What is the decimal value of
varf?
 f. What is the ASCII character for varc? l. What is the decimal value of varg?

Figure 3.18
4058 4059 4060 4061

00010010 11001011 01011001 00010010
4062 4063 4064 4065

11010001 10011100 00100001 00100100
4066 4067 4068 4069

00001111 000000001 11110101 00011101
4070 4071 4072 4073

00110011 00100100 10001001 11011001
4074 4075 4076 4077

11101101 00111011 10001001 11111110
4078 4079 4080 4081

10110111 11001001 01101001 11000100
4082 4083 4084 4085

00100100 11111100 11000001 00000000
4086 4087 4088 4089

01001001 00000001 00011010 10001001

 � ���� �	���! ��������� ���� �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Allocating Variables to RAM 94

Review Question Answers (NOTE: CHECKING THE ANSWERS
BEFORE YOU HAVE TRIED TO ANSWER THE QUESTIONS

DOESN’T HELP YOU AT ALL)

1. Number of bytes of contiguous storage for data type:

 a. char: 1 (one) d. int: 2
 b. double: 8 e. long: 4
 c. float: 4 f. long double: 16

2.a. The decimal value of vara given vara is of datatype char and has the address 4060:

 Contents of 4060: 01011001 = 26 + 24 + 23 + 20 = 64 + 16 + 8 + 1 = 89

b. The ASCII character associated with vara is: ‘X’

c. The decimal value of varb given varb is of datatype char and has the address 4063:

 Contents of 4063: 10011100 BUT since varb is of data type (signed) char, we must
compliment:

 10011100 => 01100011
 + 1
 01100100 = -(26 + 25 + 22) = -(64 + 32 + 4) = -100

 d. Since the ASCII character is determined according to all 8 bits:

 10011100 = 27 + 24 + 23 + 22 = 128 + 16 + 8 + 4 = 156
 which is associated with the ASCII character ��
�

e. The decimal value of varc given varc is of datatype (signed) int at the address 4065 (&
4066):

 0010010000001111 = 213 + 210 + 23 + 22 + 21 + 20
 = 8,192 + 1,024 + 8 + 4 + 2 + 1 = 9,231

f. The ASCII character is determined using only the right-most 8 bits of an integer:

00001111 = 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15 or the char NAK (Neg,
Acknowl).

g. The decimal value of vard given vard is of datatype signed int at the address 4068 (&
4069):

1111010100011101 => The number is negative, so we must compliment:

1111010100011101 => 0000101011100010
 + 1
 0000101011100011

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

95 Chapter 2: Allocating Variables to RAM

= -(211 + 29 + 27 + 26 + 25 + 21 + 20) = -(2048 + 512 + 128 + 64 + 32 + 2 + 1) = -2787

h. The ASCII character is determined using only the right-most 8 bits of an integer:

11100011 = 27 + 26 + 25 + 21 + 20 = 128 + 64 + 32 + 2 + 1 = 227 or the char ΠΠΠΠ

i. The decimal value of vare given vare is of datatype unsigned int at the address 4072 (&
4073):

1000100111011001 = 215 + 211 + 28 + 27 + 26 + 24 + 23 + 20
= 32768 + 2048 + 256 + 128 + 64 + 16 + 8 + 1 = 35289

j. The ASCII character is determined using only the right-most 8 bits of an integer:

11011001 = 27 + 26 + 24 + 23 + 20 = 128 + 64 + 16 + 8 + 1 = 217 or the char ∧∧∧∧

k. The decimal value of varf given varf is of datatype long at the address 4077 (through 4080):

11111110101101111100100101101001 BUT since varf is of data type (signed) long,
we must compliment:

11111110101101111100100101101001 => 00000001010010000011011010010110
 + 1
 00000001010010000011011010010111

= -(224 + 222 + 219 + 213 + 212 + 210 + 29 + 27 + 24 + 22 + 21 + 20)
= -(16777216 + 4194304 + 524288 + 8192 + 4096 + 1024 + 512 + 128 + 16 + 4 + 2 +
1)
= -21,509,783

l. The decimal value of varg given varg is of datatype unsigned long at the address 4084
(through 4087):

11000001000000000100100100000001
= 231 + 230 + 224 + 214 + 211 + 28 + 20
= 2,147,483,648 + 1,073,741,824 + 16,777,216 + 16,384 + 2,048 + 256 + 1
= 3,238,021,377

