
Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 29

CHAPTER 2:

BASIC DATA TYPES

“Simplicity of life, even the barest, is not a misery,
but the very foundation of refinement”

William Morris (1834–96)

Introduction

n this chapter, we consider two new basic data types: integers, and reals (or floating
point numbers). We also continue our discussion of the data type which we introduced in

the previous chapter: characters. All of these data types are, in turn, composed of bits.

Although we refer to these data types as basic, they are, as we
saw before, also abstract data types. Keep in mind, that as far
as the computer is concerned, they are stored as high and low
voltages. How we group them together, and how we interpret
the groupings, is totally up to us (or at least the language

designers). Must the sequence of bits 01000001 be interpreted as the character ‘A’? Of
course not. It is just a convention that we understand (unless you are using EBCDIC). The
same holds true for our interpretation of basic data types. For example, we later talk about
the sign-bit being the leftmost bit (if that doesn’t make sense right now, it will). Must it be
that way? No, we could have made it the rightmost bit (although it might change the way
we manipulate the bits)

This is an extremely important chapter. As we noted in the Section overview, these basic
data types are the building blocks for all of the following abstract data types to come. At

I
We Already Know:

‘Donuts’ are arbitrar-
ily grouped as
bytes.

��								

��������������������������������								

C
H

 1

 How do nos. & chars differ?

 How do we convert into binary?

 What are Octal and Hex? Why?

������������������������What is an Integer on the PC?

 What if I need large integers?

������������������������What is One’s Complement?

What is Two’s Complement ?

How are real numbers stored?

How are real nos. described?

What if I need large nos?

Data types are there in C?

Are there other data types?

What questions should I know?

C
H

 2

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

30 Chapter 2: Basic Data Types

times, we may seem overly repetitious, but that is only because we wish to emphasize the
importance of these data types.

Characters vs. Numbers

t is important to note that in the above sections, we were talking about character
representation. ASCII, as we noted, is a scheme for representing characters or symbols,

and nothing else. Humans typically view the set of digits {0..9} as either numbers OR
characters/symbols.

Usually, we do NOT perform mathematical operations with characters or
symbols (although, in fact, we can). For example, certainly, we would not
think of adding the strings to the right1:

As we saw in the previous chapter, characters are agreed upon interpret-
ations for our sequence of bits. For our purposes, we will
be discussing characters as they correspond to the ASCII.
Coding scheme.

It is actually a very simple procedure, but we do need to go over some basic rules first.

Adding Numbers in Binary

efore we begin our discussion, note that we are loosely using the term ‘numbers’. In
this text, we will discuss two types of numbers: Integers and Real Numbers. Integers,

by definition, are whole numbers (such as 0, 1, 567, –23). Real Numbers are rational (or
irrational) numbers. We will discuss real numbers as floating point numbers, or such
numbers as 123.456, 0.00043, -2.987. For now, we will illustrate how integers can be
represented in binary.

Adding binary numbers is much simpler than adding numbers in decimal, but it might not
seem that way initially. If you think back to when you first started to added, you will
remember that you needed first learn all of the different combinations in an addition table:
1+1=2, 1+2=3, ... 2+1=3, 2+2=4, ... 9+7=16, 9+8=17, 9+9=18. There are 45 unique
combinations (assuming you understood transitivity, i.e., 2+3 =3+2) which you had to
learn, not counting the rule that 0 added to any number is that number.

1 Strings actually can be added together in a process known as concatenation. “Jumping” + “Jack”, however,
would yield the string “JumpingJack”.

I

B

?���� What’s the difference?

?���� If numbers are also stored in binary, how do we add them together?

“Jumping”
+ “Jack”

“Flash”

 Do nos. & chars differ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 31

The rules for adding binary numbers are
considerably simpler. There are only 3
(or 4) unique combinations, including the
rule that 0 added to any number is that
number. The entire set of combinations
(including transitivity) are:

Of the examples above, the last one seems to give
students difficulties. It is really no different than, for
example, adding 6 and 8 to get 14. In both cases, we
add single digit numbers to get a two digit number.
Carrying over numbers is the same in binary as it is in

decimal:

Now let’s add 3+4. We know that
the answer is 7, but if we add the
numbers in binary (as given in the
ASCII table, Addendum 1.1.), we
come up with:

Nothing, really. We have repeatedly stated that ASCII is a coding scheme for representing
characters and symbols only. Just because we see a symbol which could also be interpreted
as a digit (e.g., 8) displayed, that does not mean that it is necessarily a number, any more
than a license plate number(?) QV-123X is a number.

We have already seen the approach necessary to represent numeric values when we began
our discussion of bits. The progression of numbers in binary is very simple: 0 1 10 11
100 101 110 111 ... Table 2.1 shows this progression for the integers 0 through 49.
 Table 2.1.

Decimal Binary Decimal Binary Decimal Binary Decimal Binary Decimal Binary
0 0 10 1010 20 10100 30 11110 40 101000
1 1 11 1011 21 10101 31 11111 41 101001
2 10 12 1100 22 10110 32 100000 42 101010
3 11 13 1101 23 10111 33 100001 43 101011
4 100 14 1110 24 11000 34 100010 44 101100
5 101 15 1111 25 11001 35 100011 45 101101
6 110 16 10000 26 11010 36 100100 46 101110
7 111 17 10001 27 11011 37 100101 47 101111
8 1000 18 10010 28 11100 38 100110 48 110000
9 1001 19 10011 29 11101 39 100111 49 110001

 Calculation 2.1.

 0 1 0 1
+ 0 + 0 + 1 + 1
 0 1 1 10

Carry-Over: 1111111
 11011010
 + 10111111
Calculation 2.2. 110011011

 0110011 (ASCII Code for '3') Calculation 2.3.

+ 0110100 (ASCII Code for ‘4’)
 1100111 (ASCII Code for ‘g’)

?���� So what gives?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

32 Chapter 2: Basic Data Types

Now, going back to our previous example, if
we add 3 + 4 (using the numbers from the
table), we find that the calculations are correct
(since the result is 7 (or 1112).

As we have alluded, there are actually no such things as characters. Characters are actually
stored as numbers (integers) and displayed as characters (according to the ASCII coding
scheme). For example, the character ‘0’ (zero) is stored as the numeric value 48, or in
binary as 0110000 (check table 2.1). Why 48? If you check the ASCII table from the
appendix in chapter 1, you will find the character ‘0’ associated with the 48th character in
the sequence (the 49th, actually, since the sequence starts off with zero). Hence, you will
sometimes hear a reference made to ASCII 48 (the character ‘0’) or ASCII 27 (the Escape
character), or ASCII 32 (blank space) or ASCII 97 (lower case ‘a’).

No real reason, although there are some efficiency considerations. One reason is because
they wanted the characters ‘0’ .. ‘9’ to be viewed uniquely from their numeric counterparts.

In the C/C++ programming language, you can
refer to characters either by their numeric value or
by the character associated with a value. Consider
the following snippets of code:

 3 = 11 (binary) Calculation 2.4
+ 4 = 100 (binary)
 7 = 111 (binary) .

Note:
Since C is a subset of C++, and
we will be using examples from
both, we will refer only to C++

 char ch; // ch is the variable we will use to hold the ASCII character
 ch = 'T'; // #1: Assign the ASCII Character T to the variable ch
 printf("The character is : %c\n",ch); // Output: The character is: T
 printf("The decimal value is: %d\n",ch); // Output: The decimal value is 84
 ch = 50; // #2: Assign the numeric value 50 to the variable ch
 printf("The character is : %c\n",ch); // Output: The character is: 2
 printf("The decimal value is: %d\n",ch); // Output: The decimal value is 50

C Code 2.1

?���� How are characters actually stored?

?����
Why don’t the characters ‘0’ .. ‘9’ have the same sequence of bits in ASCII as

as the digits 0 .. 9 ??

From this point on, we will begin including examples in both C and C++. The
functionality of both languages tend to be somewhat compiler specific, as well as
dependent upon error and warning level settings. While we will try to be generic in our
code, the student is advised to check their compiler settings.

CAVEAT

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 33

Notice that BOTH numeric data types and characters can be assigned to the variable ch,
although it is not considered good programming style (which is why in the C++ code first
cast the numeric value as a character). In case #1, we assign the ASCII character ‘T’, which
is really the value 84. In Case #2, we assign the numeric value 50, which corresponds to the
ASCII character ‘2’ (NOT the numeric value 2).

Any integer can be converted to binary. We need to learn the procedure for doing so,
however.

Converting from Decimal to Binary and Binary to Decimal

he process of converting from decimal to binary is very easy, and is similar to ones
which are used every day. For example, if I were to ask you how many days, hours,

minutes and seconds are in
334,367 seconds you would
probably go through the
following process shown in
Figure 2.1.

Thus, there are 3 days, 20
hours, 52 minutes, and 47
seconds in 334,367 seconds.
The method we employed is

also known as modulus arithmetic, which yields a quotient (e.g., the quotient of 334367/60
is 5572) and a remainder (e.g., the remainder of 334367/60 is 47). In some computer
languages (e.g., Pascal), we would use the keywords DIV to get the quotients (e.g., 334367
DIV 60 = 5572) and MOD to get the remainder (e.g., 33467 MOD 60 = 47). In C, we use
the division (/) operator to get the quotient (in modulus arithmetic, the quotient of two
integers must always be an integer), and the symbol % (percent sign) to get the remainder.

T
Figure 2.1

Total
Minutes

 Total
Hours

 Number
Days

 5572 92 3
60 334367 60 5572 24 92

 334320 5520 72
 47 52 20
Number
Seconds

 Number
Minutes

 Number
Hours

?����
The Table (2.1) only goes up to 49. What If I need to know the binary

representations for larger numbers ?

 char ch; // ch is the variable we will use to hold the ASCII character
 ch = 'T'; // #1: Assign the ASCII Character T to the variable ch
 cout <<”The Character is “ << ch << endl; // Output: The character is: T
 cout <<”The Decimal Value is “ << (int) ch << endl; // Output: The decimal value is 84
 ch = (char) 50; // #2: Assign the numeric value 50 to the variable ch
 cout <<”The Character is “ << ch << endl; // Output: The character is: 2
 cout <<”The Decimal Value is “ << (int) ch << endl; // Output: The decimal value is 50

C++ Code 2.1

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

34 Chapter 2: Basic Data Types

Notice that we first obtained the number of seconds (47), then the number of minutes (52),
then the number of hours (20), and finally the number of days (3). However, because we
wanted Days, Hours, Minutes, and Seconds, we collected from last to first (we mention
that because it will come into play a little later).

We know that there can never be more than 60 seconds in a minute, so we divided by 60.
We know that there can never be more than 60 minutes in an hour, so we divided by 60. We
know that there can never be more than 24 hours in a day, so we divided by 24.

The procedure is the same. We know that there can never be more than two values (0 and
1), so all we have to do is divide by 2. For example, we all ready know (from the table),
that 410 = 1002. Following the same procedures:

Figure 2.2.

Note: There is no reason to continue
since 0 divided by 2 will always yield
a remainder of 0.

As we did before, we gather the remainders from right to left, and hence we know 410 =
1002. Using the MOD (in Pascal) or % (in C) and DIV (in Pascal) or / (in C) notation we
introduced earlier, the procedure could be given as:

Figure 2.3.

And collecting from last to first, or bottom to top, we, find that 410 = 1002.

The procedure is quite simple:

1. Get the quotient AND the remainder of the decimal and the base-to-be-converted-to (in
this case, base 2)

2. Store the remainder
3. IF the quotient is 0, the result is the string of remainders from latest to first (Reverse of

order stored).
4. IF the quotient is greater than 0, set the new decimal equal to the quotient and go to step

1.

 2 1 0
2 4 2 2 2 1
 4 2 0
 0 0 1

Quotient Remainder Quotient Remainder
4 DIV 2 = 2 4 MOD 2 = 0 OR: 4 / 2 => 2 4 % 2 = 0
2 DIV 2 = 1 2 MOD 2 = 0 2 / 2 => 1 2 % 2 = 0
1 DIV 2= 0 1 MOD 2 = 1 1 / 2 => 0 1 % 2 = 1

Conversion to Binary Procedures

?���� What does this have to do with binary??

?���� What did we do ??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 35

Notice that in the algorithm, we stated 'base-to-be-converted-to'. The algorithm will work
for any base (greater than 1). We’ll have examples of converting to Octal (base 8) and Hex
(base 16) a little later.

Let’s try a longer one. Let’s Convert the decimal 20810 to binary.

Figure 2.3.

Collecting from last to first, or bottom to top, we find that 20810 = 110100002.

The C/C++ code follows the procedures given above exactly. However, there is one little
‘twist’, which need not be noted at this time. We will return to conversion from decimal to
binary in Chapter 5 (Strings).

We already have some clues that the
number is probably correct. For instance,
we know how many bits are needed to
represent the number 20810:

So, we know that we have the correct number of bits. But we still can’t be sure unless we
can convert from binary to decimal to check our work. Converting from binary to decimal
may appear more confusing at first, but in fact it is also very easy. Keep in mind that we
have a number of different ways for representing the same number (in the same base). For
example:

Calculation 2.6.

12,05610 = 10,000 + 2,000 + 0 + 50 + 6
 = 1 * 1,000 + 2 * 1000 + 0 * 100 + 5 * 10 + 6 * 1
 = 1 * 104 + 2 * 103 + 0 * 102 + 1 * 101 + 6 * 10
 = 12,056

Quotient Remainder Quotient Remainder
208 DIV 2 = 104 208 MOD 2 = 0 OR: 208 / 2 = 104 208 % 2 = 0
104 DIV 2 = 52 104 MOD 2 = 0 104 / 2 = 52 104 % 2 = 0
52 DIV 2 = 26 52 MOD 2 = 0 52 / 2 = 26 52 % 2 = 0
26 DIV 2 = 13 26 MOD 2 = 0 26 / 2 = 13 26 % 2 = 0
13 DIV 2 = 6 13 MOD 2 = 1 13 / 2 = 6 13 % 2 = 1
6 DIV 2 = 3 6 MOD 2 = 0 6 / 2 = 3 6 % 2 = 0
3 DIV 2 = 1 3 MOD 2 = 1 3 / 2 = 1 3 % 2 = 1
1 DIV 2 = 0 1 MOD 2 = 1 1 / 2 = 0 1 % 2 = 1

Calculation 2.5.

 n = log(I)/.30103 = log(208)/.30103

 = 2.319/.30103 = 7.700 = 8

?���� How do we know that we haven’t made a mistake?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

36 Chapter 2: Basic Data Types

The same approach can be applied to other conversions, regardless of the base used. For
example, we could represent the binary equivalent of 20810 (110100002) as:

Calculation 2.7.
110100002 = 1000000 + 1000000 + 000000 + 10000 + 0000 + 000 + 00 + 0
 = 1 * 27 + 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 0 * 21 + 0 * 21 + 0 * 20
 = 1 * 128 + 1 * 64 + 0 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 0 * 1
 = 128 + 64 + 0 + 16 + 0 + 0 + 0 + 0
 = 20810

Notice that we have gone
about it the hard way.
Whenever a digit is 0
(zero), it need not be
considered in our calcu-
lations since 0 times any
number is 0. We could
have rewritten the example as:

Notice also that even our
simplified method of cal-
culation can be further
simplified, since 1 (one)
times any number is that
number:

Let’s take one more, slightly longer, example2. Let’s convert the integer 47910 to binary:

 Figure 2.3.
1110111112

Again, we could have predicted (approximately)
that the binary equivalent would be

log(479)/log(2) = 2.68/0.301 = 8.9 = 9

So we need 9 bits, and we als know that the
binary representation would end in a ‘1’, since
the number is odd

Checking the binary equivalent, we would find: Calculation 2.10.

1110111112 = 1 * 28 + 1 * 27 + 1 * 26 + 1 * 24 + 1* 23 + 1* 22 + 1 * 21 + 1 * 20
 = 1 * 256 + 1 * 128 + 1 * 64 + 1 * 16 + 1 * 8 + 1 * 4 + 1 * 2 + 1 * 1
 = 256 + 128 + 64 + 16 + 8 + 4 + 2 + 1
 = 47910

2 From this point on, we will use only C/C++ notation

 Calculation 2.8.
110100002 = 1000000 + 1000000 + 10000
 = 1 * 27 + 1 * 26 + 1 * 24
 = 1 * 128 + 1 * 64 + 1 * 16
 = 128 + 64 + 16
 = 20810 +

 Calculation 2.9.
110100002 = 1000000 + 1000000 + 10000
 = 27 + 26 + 24
 = 128 + 64 + 16
 = 20810 +

Quotient Remainder
479 / 2 = 104 479 % 2 = 1
239 / 2 = 52 239 % 2 = 1
119 / 2 = 26 119 % 2 = 1

59 / 2 = 13 59 % 2 = 1
29 / 2 = 6 29 % 2 = 1
14 / 2 = 3 14 % 2 = 0

7 / 2 = 3 7 % 2 = 1
3 / 2 = 1 3 % 2 = 1
1 / 2 = 0 1 % 2 = 1

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 37

The basic concepts (conversion from decimal to binary or binary to decimal) are the same
regardless of the base.

We often see Octal (base 8) and Hexadecimal (base 16) used in computer literature (if you
check, for example, any ASCII or EBCDIC table, in addition to indicating the decimal
value of the coding scheme, it will also list Octal and Hex Values). Why? Basically because
it is convenient to convert from Binary to Octal, or from Binary to Hex (and vice-versa).
Much easier than it is from Binary to Decimal (or vice versa).

Octal

s the term implies, there are only 8 digits (0 .. 7) in the Octal num-
bering system (just as there are 10 (0 .. 9) in decimal, and 2 (0, 1) in

binary). The advantage, when it comes to binary, is the correspondence. For
example, a byte (8 bits) can be readily, and quickly, represented by three octal digits, since
23 = 8:

Table 2.2.

Octal Number 0 1 2 3 4 5 6 7
Binary Number 000 001 010 011 100 101 110 111

Figure 2.4.
A nice match. But it gets even better. Take, for example, the
number 20810. We already know that the binary equivalent is
110100002 (from Figure 2.3. and calculation 2.10.). In Octal it
is:

Which is a Direct transfer from Table 2.2

Remember, we previously said that the procedures we
used are the same for any base. Using the same
procedure we used to convert from decimal to binary,
we can convert from decimal to octal.

 3208

A

11 010 000

3 2 0

Figure 2.5.
Quotient Remainder
208 / 8 = 26 208 % 8 = 0

26 / 8 = 3 26 % 8 = 2
3 / 8 = 0 3 % 2 = 3

?���� You mentioned Octal and Hex before. What do they have to do with this?

?���� How do we know that 3208 is 20810 ??

����������How do I convert to binary? �

��������DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

38 Chapter 2: Basic Data Types

We use essentially the same
method we used we converted
from binary to decimal: We keep
track of the exponent position and
the value of the digit at that position. The only difference is that we can have the values
0..7. To convert the octal number 3208, we follow the procedure given in calculation 2.11.

Absolutely. Nothing has changed. As we said earlier, it works the same for ALL bases.

Hexadecimal (Hex)

he rational for using Hexadecimal (base 16) is the same as that for
using Octal. Given 4-bits, we can represent up to 16 pieces of

information, which is convenient since we need only 2 Hexadecimal digits
to represent a byte (since 1 byte = 8 bits = 28 = 256 = 162 = 2 Hex digits). The
disadvantage is that instead of memorizing 8 conversion tables (as in octal), one needs to
memorize 16 conversion tables (Actually 14 since 02 = 016 and 12 = 116, or 7 if you already
know the Octal conversions). Additionally, while all 8 digits are found in the decimal digit
set (i.e., 0 = 0, 1 = 1,, 6 = 6, 7 = 7), Hex contains six symbols which are not part of the
decimal digit set. The correspondence between Decimal and Hex is as follows:

Table 2.3.

Because the symbols 10 (through 15) actually consist of 2 symbols each. For example the
number 13 consists of the symbols ‘1’ and ‘3’. For any base, the elements of that base are
represented by a unique symbol. In decimal, the number 10 is represented by two digits: ‘1’
and ‘0’

 Calculation 2.11.

3208 = 3 * 82 + 2 * 81 + 0 * 80
 = 3 * 64 + 2 * 8 + 0 * 1
 = 192 + 16 + 0
 = 20810

T

Decimal Hex Decimal Hex Decimal Hex
0 0 6 6 12 C
1 1 7 7 13 D
2 2 8 8 14 E
3 3 9 9 15 F
4 4 10 A
5 5 11 B

?���� How do we convert from Octal to Decimal ??

?���� Does it work the same for Hex (Hexadecimal) ??

?���� Why do we need ‘A’ through ‘F’? Why can’t we use 10 through 15 ??

��������DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 39

Nonetheless, even though the Hex numbering system contains more digits than the decimal
number system, none of the rules of conversion have changed. Consider the (decimal)
number 19710, which in Binary would be:

 110001012 Which we know is 19710
since

27 + 26 + 22 + 20 = 128 + 64 + 4 + 1 = 197

We also know that in Octal, the number is:

 111 000 101

 7 0 5

We further know (from the rules stated above),
that in Hexadecimal the decimal number 19710
would be:

C516 Which we know is 19710 since

C(=12)*161 + 5*160 = 12*16 + 5*1 =192 + 5 = 19710

As far as converting from Hex to decimal (or vice versa), it is merely a matter of using
conversion Tables (or memorizing the conversion) just as we did with Octal:

 Table 2.4.
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Therefore (according to the Tables): C 5 = Hexadecimal Equivalent

 19710 = 110001012 = 1100 0101

To convert between Hex and Octal, or Octal and
Hex, The easiest method is to use binary, as in Figure
2.8.

Note from Addendum 1.1 (and Addendum 1.2.), that any character can be represented
using combinations of 2 Hex Digits.

. Figure 2.6

Quotient Remainder
197 / 2 = 98 197 % 2 = 1
98 / 2 = 49 98 % 2 = 0
49 / 2 = 24 49 % 2 = 1
24 / 2 = 24 24 % 2 = 0

12 / 2 = 6 12 % 2 = 0
6 / 2 = 3 6 % 2 = 0
3 / 2 = 1 3 % 2 = 1
1 / 2 = 0 1 % 2 = 1

Figure 2.7.

Quotient Remainder
197 / 16 = 12 197 % 16 = 5

12 / 16 = 0 12 % 16 = 12 = C

 Figure 2.8.

HexValue: C 5

BinaryValue: 1 1 0 0 0 1 0 1

Octal Value: 3 0 5 ��������������������������������What are Octal and Hex? Why?

����

 �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

40 Chapter 2: Basic Data Types

Characters

e have seen that there is a difference between characters and numbers, in terms of
how the computer interprets them. We have seen that characters are stored accord-

ing to ASCII (or EBCDIC) coding schemes, and the digits (0 .. 9) may also be considered
characters and stored in ASCII format. We have also seen that characters do NOT exist,
except in the abstract. Characters are stored as numeric values on 8-bits or 1-byte.

Take, for example, the
character { (left brace).
From the ASCII table, we
know that this is actually
stored as the numeric
value number 12510 (or

011111012 on 8-bits). If we could look inside of RAM, we might see the value stored as it
is in Figure 2.9.

Keep in mind that this is a numeric value. It is the numeric value 125, or ASCII 125
(actually, the 126th sequence of bits in the ASCII table). It is NOT the character string
“125”. If we were to store the character string “125” in ASCII format, we would have to
save it using three bytes (24 bits), as:

 Figure 2.10.
 49 � ASCII Char. ‘1’ 50 � ASCII Char. ‘2’ 53 � ASCII Char. ‘5’

0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1

If this was the only manner in which we could store numeric values, we would have a
severe problem.

Remember, a byte contains only 8-bits. That means that we can only represent 256 pieces
of information or the integers from 0 through 255.

Obviously we need more bits. Rather than trying to determine how many more bits we
need, since we have been working with bytes, and 8 bits is basic unit which is addressed3

3 There is such a thing as a ‘nibble’ which is 4-bits.

w

Figure 2.9. 0 1 1 1 1 1 0 1

Voltage: Off On On On On On Off On
 � � � � � � � �

?���� What’s the problem?

?���� How do we get larger numbers?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 41

by the computer, it makes sense to see what numbers we can obtain by dealing with multi-
ples of 8 bits. Why not double the number of bits?

Integers

e have already defined integers as the set of whole numbers. In fact,
it is the set of all whole numbers ranging from minus infinity to

positive infinity. Obviously, we would have a problem implementing that
definition, since we can not have an infinite amount of memory. RAM may be getting
larger with each passing day, but it will never reach infinity.

If we use 16-bits (2 bytes) we know that we can represent 216 = 65,536 numbers (or the
integers from 0 to 65,535). Certainly, this is a considerably larger range than that obtained
with only 8-bits. On the PC, this (16-bits) is the number allocated for an integer. However,
there is one apparent restriction: we have limited ourselves to working with only non-
negative numbers.

The fact that a number is either positive or non-positive (we use this terminology because
of zero; is zero positive or negative?), works to our advantage. Positive or non-positive is a
binary condition. To represent it, we need only one bit (e.g., 0 if positive, 1 if non-
positive). Therefore. if we have 16 bits to begin with, we can sacrifice 1 bit for the sign,
leaving us with 15 bits (215 = 32,768) to use for the number.

PC Computer designers decided to allocate 16 bits for an
integer, at least originally. That means that integers were
stored with a 1-bit sign (the left-most bit), with the
remaining 15-bits used to represent the value.

This is the definition of the data type integer on a PC: A 16-bit signed integer, with 1-bit
used for the sign, and the remaining 15-bits used to represent the value of the integer. The

range for an integer is therefore -215 (-32,768)
to +215-1 (+32,767).

W

 Table 2.5.

1-bit Sign 15-bit Value

����DDeeff

?���� How do we allow for both positive and non-positive number?

��What is an Integer on the PC?
����

 �

The Times, they are a changin’. Just a few years ago, integers on PCs required 16-bits.
Now, we are finding that 32-bit integers are more common, and perhaps will become the
rule (certainly, Visual C++ compilers use 32-bit integers). We are introducing integers as
16-bit data types for two reasons: (1) they are initially easier to grasp, since they are
intuitive transitions from characters, and (2) there are still some compilers that use 16-bit
integers. We do discuss 32-bit integers a little later, but students should check their
manuals.

CAVEAT

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

42 Chapter 2: Basic Data Types

We want to represent 0 (which is neither positive nor negative). Of course, we could have a
+0 and a -0, which some computer architectures did allow for (more on that later).

Let’s take the value +5,389. The binary equivalent is 10101000011012 (we leave it to you
to check the conversion). On 15-bits (the number of bits we have available to represent an
integer value) the binary equivalent would be 0010101000011012. If we assign a 0 (zero) to
the left-most bit to mean positive, the number becomes 00010101000011012 (on 16-bits).
In RAM, we would store the number as:

 Figure 2.11.

0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Off Off Off On Of
f

On Off On Off Of
f

Of
f

Off On On Of
f

On

 W here the left-most bit is the Sign-Bit, and 0 � Positive

Depends4. The IBM-PC was initially designed as a 16-bit machine (i.e., it has a two byte
word size), and uses 16-bits for an integer (see earlier footnote). Mainframes and mini-
computers, which were designed as 32-bit machines use 4-bytes for an integer. Super-
computers may use 62-bit integers. In the case of mainframes and minicomputers, the
machine is capable of storing whole numbers between the range -231 to +231 - 1 (we still
need one bit for the sign and we still lose one for the value because we have to represent 0),
or all the whole numbers between -2,147,483,,648 and +2,147,483,647 (inclusive). The
number 456,278,92110 = 110110011001001000011100010012 would be stored as:

 Figure 12.12.

 Where the left-most bit is still the sign bit, and 0 (zero) � positive
Check:

110110011001001000011100010012 = 228 +227+225+224+221 +220+217+214+29+28+27+23 +20
= 268,435,456 + 134,217,728 + 33,554,432 + 16,777,216 + 2,097,152 + 1,048,576 + 131,072
 + 16,384 + 512 + 256 + 128 + 8 + 1
= 456,278,921

4 Keep our Caveat in mind

?���� Why +215 – 1 ??

?���� What does this mean in practice?

?���� Are 16-bits enough?

0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 43

Yes and no. On some older machines, and older software packages, maybe. As mentioned
earlier, some modern PC applications, such as Windows 95 and 98, allow for 32-bit
integers5. The standard data type int (integer) can still be16-bits, however. There is also a
variable type called short6 (or unsigned short), which uses the 16-bits as an signed (by
default, unless the unsigned prefix is used) integer (much like the numeric byte we talked
about earlier). In other words (since we do not need to devote 1-bit to the sign) we can
represent the non-negative whole number 0 through 65,535 (still a total of 216 = 65,536
pieces of information).

The C++ programming language also allows for a data type called long7 (or unsigned
long). Intuitively, we could have predicted that this data type uses 32-bits without the sign-
bit, meaning that we can represent the whole number from 0 through 4,294,967,295 (232 =

4,292,967,296), inclusive. On mainframes, how-
ever, the data type long uses 64-bits, meaning
that (signed) longs take on (approximately) the

range –9,223,372,036,854,780,000 to 9,223,372,036,854,780,000, and unsigned longs
cover the range 0 through 18,446,744,073,709,600,000.

Now, if you really need large integers, get a supercomputer, such as a Cray. A word size on
a Cray is 128-bits. That means a signed integer can take on the values from -2127 to +2127 -
1. That means you can represent the whole numbers from, well, ... it’s a large number:

-1.701411834605e+38 to +1.701411834605e+38 - 1. A number to 38 places. Very big.

Manipulating Integers

dding positive integers together is not a big deal, and follows the procedures we
previously described (see Calculation 2.1.). For example, if we wished to add the

integers 31210 (=1001110002, or 00000001001110002 using 16-bits) and 31210, we would
add them as:

5 Even though Windows 95 and 98 allow for 32-bit integers, as we noted earlier, many of the C compilers in
use (at the time of this writing) still assume 16-bit integers.

6 Even if ALL PCs use 32-bit integers, shorts will still require 16-bits.
7 As of this writing, the data type in Visual C++ long still uses 32-bits.

A

?����
Does that mean that we can never have integers larger than 32,767 (or

smaller than -32,767) on the PC?

?���� How does the computer actually do calculations with integers?

 What if I need larger integers
?

 �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

44 Chapter 2: Basic Data Types

Calculation 2.11.
Which is correct since:

29 + 26 + 25 + 24 =
512 + 64 + 32 + 16 = 624

Using our scheme for signed integers (i.e., allocating 1-bit for the sign), we (sort-of)
implied that a negative integer (or non-positive) had the same value as a positive integer,
and that only the sign bit would vary (from 0 for positive, to 1 for negative).

Well, not quite.
Calculation 2.12.

This time, let’s add the
values -31210 and +31210.
We know that if we add
-31210 and +31210 the result
is 0. Since we know the
binary equivalent of +31210, the binary equivalent of -31210 should be the same, except
that the sign bit (the left-most bit) will have a ‘1’ instead of a ‘0’. But when we add the two
values together we find that the resultant value is actually –62410, or 10000010011100002.

Yes, something is wrong. As it turns out, one of the advantages of using binary (as opposed
to decimal), is that manipulation of bits is very easy, although slightly different than what
we are accustomed to.

In binary, the negative of a positive number is the opposite of that number.
For example, the negative of the positive number 00000001001110002
would be 11111110110001112 (the ‘0’ bits have been changed to ‘1’ and

the ‘1’ bits have been changed to ‘0’). This procedure is known as complementing8, or
simply changing the value of the bit (i.e., if the value is 0, it becomes 1; if the value is 1, it
becomes 0)

Calculation 2.13.
It may look and
sound strange, but
let’s try the same
addition using
this scheme.

8 Note the spelling. While this is a nice number, we are NOT complimenting it

Carry-Over 1 1 1 1
312: 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0

+ 312: 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0
624: 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0

Carry-Over 1 1 1 1
312: 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0

+ -312: 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0
-624: 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0

312: 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0
312 Complemented 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1

???: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

?���� Wait a minute. Something is wrong. What gives?

?���� What sort of value is 11111111111111112?

DDeeff

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 45

Keep in mind our earlier statement: The left-most bit is the sign-bit, and if it is
‘0’ it is positive, and if it is ‘1’ it is negative. Also, remember our later
statement: If the number stored is negative, then it is stored as a complemented
number.

Figure 2.13.

To interpret a
complemented
value, we must

again complement it (or uncomplement, if you will). Since, for our example, the left-most
bit is a ‘1’, it means it is negative. To determine the value, we must complement the other
15-bits. When we do, we find the value is actually –0.

In some (older) machines, this is a legal value. After all, -0 = +0, since 0 is neither positive
nor negative. In these machines, which rely on One's Complement, assuming a 16-bit
integer, the range of integers is -215 - 1 (-32,767) to +215 - 1 (+32,767). We give-up one
integer (not such a big loss), and must understand that -0 = +0, but it works just fine.

One’s complement is not always confusing. Let’s take another example, using one’s
complement. Let’s add -1,24810 (where 1,24810 = 100111000002, and the one’s
complemented value is
11111011000111112),
and the number 2,45610
(1001100110012) which
should adds to 1,208
(100101110002).

 Carry-over Dropped

No. As we mentioned above, we have to complement only non-positive results (i.e., if the
sign bit is 1). The result of our addition here is positive (i.e., the sign bit is 0).

Figure 2.14.
Let’s take a simple ex-
ample where the result is
negative. Let’s add +4
(1002) and –8. Since 810 =
10002, then when we
complement, the value -8
is 11111111111101112.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Complement: ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Carry-Over 1 1 1 1 1 1 1 1 1 1 1 1
-1,248: 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1
+2,456: 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

1,208: 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0

Carry-Over 1
4: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

+ -8: 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
Sum: 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

Complement ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Result: 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

?���� A –0 (Negative Zero)?? You’ve got to be kidding !

����DDeeff

Calculation 2.14.

?���� Wait! Don’t we have to complement the result?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

46 Chapter 2: Basic Data Types

The result, of course, is –410 (1111111111110112), but in order to find this out, we must
again complement the sum of our binary addition (00000000000001002 = 410).

For one’s complement, the rules are relatively simple:

1. If a number is negative, complement all the bits (including the sign-bit)
2. If the resultant number is negative, complement all the value bits (except the sign-bit).
3. If there is a carry-over from the sign-bit, disregard it.

It may initially seem complicated, but in fact it is very simple. Don’t forget that that the
only real attribute the computer has is that it is fast. How long does it take to complement a

number? How many MHz is your computer
running at?

It’s a very fast methodology. The only draw-back is that we can obtain negative values for
0 (and we lose 1 integer value, since we represent both +0 and -0).

Yes, but we need to modify our procedure slightly.

Two’s Complement

e can eliminate a negative zero (-0) using a procedure called two’s complement,
which is almost universally used to represent negative numbers. The principles are

the same, as are the rules, except that it requires 1 additional step. If, and only if, the
resultant of the additional is negative, we must add 1 bit after we perform a one’s
complement.

Let’s take a relatively simple example: 128 + (- 128). We could predict, without any
calculations that 12810 = 100000002 on 8-bits Or 0000000100000002 on 16-bits

Some integers are readily converted into binary based on what we already know.
Obviously, we know how the decimal values 0 and 1 would appear in binary (the same).
Some can be readily determined based on what we know about how many bits it takes to
represent an integer. For example, we know that given 7-bits, we can represent 128 pieces
of information, or the integers from 0 through 127. That means that 11111112 must
represent the value 12710. If that is true, then 1 more than that (11111112 + 1 = 100000002)
must represent the value 12810. Consider the following representations:

W

One’s Complement

?���� Can –0 (a negative zero) and the loss of one integer value be avoided?

������������������������������������What is One’s Complement ?
����

 �

?���� How could we predict that???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 47

 Table 2.6.

No.
Bits

Amount of
Information

Range

Known Conversion #1

Known Conversion #1
3 8 0 – 7 710 = 1112 810 = 10002
4 16 0 – 15 1510 = 11112 1610 = 100002
5 32 0 – 31 3110 = 111112 3210 = 1000002
6 64 0 – 63 6310 = 1111112 6410 = 10000002
7 128 0 – 127 12710 = 11111112 12810 = 100000002
8 256 0 – 255 25510 = 111111112 25610 = 1000000002
9 512 0 – 511 51110 = 1111111112 51210 = 10000000002

10 1,024 0 – 1,023 1,02310 = 11111111112 1,02410 = 100000000002

Now, returning to the issue at hand, let’s convert the integer –12810 into binary using two’s
complement.

Figure 2.15.
First convert 12810 into binary:
Then complement:

 Carry Overs
–12810 in one’s Complement:
Add 1:
–12810 in two’s Complement:

Calculation 2.15:

Now when we add the
numbers 128 + -128, we
get the numeric value
zero (0), not –0 (negative

zero).

 The Carry-over is again dropped

Let’s take another example: Let’s add 25510 and –1,02310. Obviously, the result is –768.
We already know the binary equivalents of 25510 (111111112 on 8-bits or
00000000111111112 on 16-bits) and 1,02310 (11111111112 on 8-bits or
00000011111111112 on 16-bits) because they are readily convertable (see Table 2.6.).
Now, following our procedure:

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

 1 1 1 1 1 1 1 1
1
0

1
1

1
1

1
1

1
1

1
1

1
1 1

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Carry-Over 1 1 1 1 1 1 1 1 1
128: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

+ -128: 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

48 Chapter 2: Basic Data Types

Figure 2.16.

First convert 1,02310 into binary:
Then complement:
–1,02310 in one’s Complement:
Add 1:

Carry-Overs
–1,02310 in two’s Complement:
Now add 25510:
Since the Resultant is negative:
Then complement:
Yielding a value we can evaluate:

-(10111111112) = -(29 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 21)
 = (512 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1) = -767

We omitted one step. Re-
member, when we per-
formed two’s complement,
we added one (1) to the
one’s complemented num-
ber. When we complement
a negative number, we

must once again add 1 (one) to the one’s complemented result.

Figure 2.17.
If we add after we complement,
or subtract before we comple-
ment, we come out with the
same result. For example, let’s
take the integer 1710 (= 100012).
The two’s complement of
100012 is 11111111111011112

(on 16-bits).

To evaluate the number 11111111111011112 we can either:

 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 0
1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0 1

+ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1

Calc. 2.16.
Carry-Over:

Resultant: 0 0 0 0 0 1
1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1 1

Add 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
New Result: 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

?���� But That’s Wrong!! –1,023 + 255 = -768. What Happened ???

= -(29 + 28) = -(512 + 256) = -768

?���� That sort-of makes sense, BUT if we added before, shouldn’t we subtract now ??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 49

 Subtract before we complement OR
Add after we complement

Figure 2.18.

One final example: Let’s add –7910 and –1,02310
(which we know from Figure 2.16. is
11111100000000012 (on 16-bits) in two’s
complement. -7910 would be:

Adding the two integers together:

 - 79
+ -1,023
Since the left-most bit is ‘1’:
Complement

To get One’s Complement
And add 1
Then Evaluate:

-(210 + 26 + 23 + 22 + 21) = -
(1,024 + 64 + 8 + 4 + 2) = -1,102

which is correct

Notice that if we add two complemented integers together, the values will be correct. As
always, however, if the resultant value contains a ‘1’ in the left-most digit, we will again
have to complement to find out the true value.

 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0

 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

Figure 2.19.

Quotient Remainder
79 / 2 = 39 79 % 2 = 1

39 / 2 = 19 39 % 2 = 1
19 / 2 = 9 19 % 2 = 1

9 / 2 = 4 9 % 2 = 1
4 / 2 = 2 4 % 2 = 0
2 / 2 = 1 2 % 2 = 0
1 / 2 = 0 1 % 2 = 1

 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1

1 1
1

1
1

1
1

1
1

1
1 1 1 1 1 0 1 1 0 0

1
0 1

+ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1
 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

0 0 0 0 1 0 0 0 1 0 0 1 1
1
0 1

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0

Complement

?���� But two’s complement does seem more time consuming! Is it ??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

50 Chapter 2: Basic Data Types

Perhaps slightly, but at 450 MHz it really doesn’t make much difference. There is another

advantage to complementing: The computer never
has to subtract. We may enter an equation as x = 5 -
3, but the computer will respond with x = 5 + (-3)

(complementing, as we have seen, is no big deal). In fact, the computer can deal with
multiplication and division by adding, although the procedures involved will not be dealt
with in this text.

Real/Floating-Point Numbers9

ust as it was obvious that we can’t do too much if we limit ourselves to 8-bit integers, it
should be equally as obvious that we can’t limit ourselves to whole numbers (or even

16-bit or 32-bits, for that matter). Real Numbers, or floating-point numbers, are not limited
to whole numbers; theoretically, they include all numbers from infinitely large to infinitely
small, with an infinite number of values between any whole number. Practically speaking,
we know that we have to do the best we can given the limitations (storage space) we have
to deal with.

Real numbers pose another question for us. We saw that integers can be either negative or
positive (as can real numbers), and do account for that, we assigned 1-bit for the sign.
Reals also have a decimal component, which we must keep track of.

It is not as bad as it might seem. Take, for example, the two real numbers 12.345 and
123.45. What is the major difference between the two? Where the decimal point is.

Consider the inte-
ger 12,056. We
could represent in
various formats,
each of them
yielding the same
value

9 The terms real and floating-point are frequently used inter-changably. Any number can be represented as a
floating point number; real numbers include the numbers between integers.

J

 Calc. 2.17.

12,506 = 1,250.6 * 10 = 1,250.6 * 101 = 1,250.6 E1
 = 125.06 * 100 = 125.06 * 102 = 125.06 E2
 = 12.506 * 1,000 = 12.506 * 103 = 12.506 E3
 = 1.2506 * 10,000 = 1.2506 * 104 = 1.2567 E4
 = 0.12506 * 100,000 = 0.12506 * 105 =

What is Two’s Complement? �

?���� How do we manipulate real numbers ??

?���� How??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 51

The same concepts
can be applied to
real numbers. For
example, the real
number 123.45.

Any number, whether integer or floating-point, can be represented in the same fashion:
 Calc. 2.19.

256 = 0.256 E+3 -734,56682 = -0.73456482E+3 0.03 = 0.3 E-1
-65,536 = -0.65536 E+5 22.4321 = 0.224321E+2 -0.00567 = -0.567 E-2

94,967,291 = 0.94967291 E+8 -0.8 = -0.8E+0 0.0000034 = 0.34 E-5

Using this approach, it is apparent that we must keep track of three components: the sign
(as before: + or -) of the number, the mantissa (which by definition is the decimal
component of a number) or value (in the case of 123.45, the value .12345), and the char-
acteristic of the exponent (in the case of 123.45 =
.12345E+3, the exponent +3). What we need to con-
sider is how many bits we wish to devote to each of
the components.

The sign is easy: we still need only 1 bit. If we, again, decide to use only 16 bits, that
leaves us with 15 bits to distribute between the exponent and the mantissa. How much
information can we store? There is a trade-off: allowing more bits to the mantissa (or
value), means that we can represent numbers more precisely. Giving more bits to the
characteristic (exponent) means that we can have larger and smaller number, or we change
the magnitude of the value.

For example, if we (arbitrarily) decide to assign 4-bits to the characteristic (exponent
value), and the remaining 11 bits to the mantissa (numeric value), then (keeping in mind
that the characteristic of the exponent can positive or non-positive), the possible range of
numbers is:

Calculation 2.20.

Given an 11-bit mantissa: I = 211 = 2,048 => the values 0 through 2,047 (inclusive)
Given a 4-bit exponent: I = 24 = 16 but since exponents take on pos. and neg. values:

 Exponent Range = -23 to +23 -1 or -8 to +7

That means that the range of numbers we can represent is -.2047E-8 to +.2047E+7, or more
simply -.000000002047 to +2,047,000. However, there is a caution here. The value 123.45
is clearly in the range of values given, BUT we can not represent it.

Under our present scheme we are only allowing 11-bits to the mantissa. Eleven bits will
allow us to represent numbers up to 2047 to four decimal points of precision. The value

. Calc. 2.18.
123.45 = 12.345 * 100 = 12.345 * 10 = 12.345 E1
 = 1.2345 * 100 = 1.2345 * 102 = 1.2345 E2
 0.123 * 1,000 = 0.12345 * 103 = 0.12345 E3

?���� Why not??

How are real numbers stored? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

52 Chapter 2: Basic Data Types

12345 (overlooking the decimal point) requires 5 decimals of precision and therefore we
would 14-bits (since 213 = 8192 and 214 = 16384).

It does not make sense to talk about a range of real numbers. We need to be concerned
about how precisely we can represent values. Consider the following values and how many
bits are necessary to represent them as decimals:

 Calculation 2.21.

20.49 = 0.2049 E+2 ���� log(2049)/.30103 = 3.312/.30103 = 11.002 ���� 12-bits needed
 -798.76 = -0.79876 E+3 ���� log(79876)/.30103 = 4.9024/.30101 = 16.29 ���� 20-bits needed
 0.0876542 = 0.876542 E-1 ���� log(876542)/.30103 = 5.9408/.30101 = 19.74 ���� 20-bits needed

Floating-point numbers are generally described in terms of level of
precision (how precisely, or to how many decimal points, we can represent

a number). With 11-bits devoted to the mantissa, we
have only three decimal points of precision.

Yes, but, as we saw above we can not represent the number 2,049 (or any four digit number
larger than 2,047 for that matter). The level of precision stated implies that all numbers can
be displayed at that level of precision10.

That depends on what you want. However, this is really a zero-sum game: If we add more
digits to the mantissa to increase the level of precision, we must reduce the number of bits
we allocate to the characteristic, meaning we decrease the magnitude of the numbers we
can represent.

10 Some texts and manuals would say, in this case, three or four decimals of precision.

We are being slightly misleading here. Converting the decimal component of a real num-
ber to binary is somewhat different than converting an integer to binary. The basic
concept (how many bits are needed) that we are addressing, however, is basically the
same. For those of you wishing to see how the decimal component of real number is
actually calculated, and how real numbers are actually stored, we include the process in
Addendum 2.1.

CAVEAT

How are real nos. described? �

����DDeeff

?����
Why three? Can’t we represent, for example, the number 2,012, and isn’t that

four decimal points of precision ??

?���� What level of precision should we have??

?���� What does magnitude have to do with it??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 53

Consider the numbers 4.5, 450000, and 0.000000000045. If we were to put them in expo-
nential format, they would be represented as 0.45E+1, 0.45E+6, 0.45E-10. The precision
needed (2 decimal points), and the number of bits required for the mantissa (6) are the
same. However, we must allocate 2-bits to the characteristic to represent 0.45E+1, since 22
= 4 � the characteristic values –2 to +1. To represent 0.45E+6 we need 4-bits since 24 =
16 � the characteristic values –8 to +7. To represent the value 0.45E-10 we need 5-bits
since 25 = 32 � the characteristic values –16 to +15. Remember, however: For every bit
we add to the characteristic, we take one away from the mantissa.

If we stick to using 16-bits, and knowing that we must allocate 1-bit for the sign, the
combinations using the remaining 15-bits are as follows (Table 2.7.):

 Table 2.7.

Characteristic
Bits

Mantiss
a

Bits

Precision
(decimal points)

Magnitude
(Exponent Ranges11)

1 14 214 = 16,384 � 4 21 = 2 � -20 to +20-1 � -1 to 0
2 13 213 = 8,192 � 3 22 = 4 � -21 to +21-1 � -2 to 1
3 12 212 = 4,048 � 3 23 = 8 � -22 to +22-1 � -4 to 3
4 11 211 = 2,048 � 3 24 = 16 � -23 to +23-1 � -8 to 7
5 10 211 = 2,048 � 3 25 = 32 � -24 to +24-1 � -16 to 15
6 9 29 = 512 � 2 26 = 64 � -25 to +25-1 � -32 to 31
7 8 28 = 256 � 2 27 = 128 � -26 to +26-1 � -64 to 63
8 7 27 = 128 � 1 28 = 256 � -27 to +27-1 � -128 to 127
9 6 26 = 64 � 1 29 = 512 � -28 to +28-1 � -256 to 255

10 5 25 = 32 � 1 210 = 1,024 � -29 to +29-1 � -512 to 511
11 4 24 = 16 � 1 211 = 2,048 �-210 to +210-1 � -1,024 to 1,023
12 3 23 = 8 � 1 212 = 4,096 �-211 to +211-1 � -2,048 to 2,047
13 2 22 = 4 � 1 213 = 8,192 �-212 to +212-1 � -4,096 to 4,095
14 1 21 = 2 � 1 214 = 16,384 �-213 to +213-1 � -8,192 to 8,191

Looking at the table, it becomes obvious that none of the combinations are really adequate.
The mantissa is too small, and, in most cases, there is really no need to have an exponent as
large as 213 (the number 0.4E+8192 is 4 followed by 8,191 zeros).

Just as we saw that 8-bits was insufficient to represent integers, we need to increase the
number of bits used to represent real numbers.

11 This is not quite correct. Exponent values Biased, but we will not go into a discussion of how this works
here.

?���� What’s the best trade-off??

?���� By how many??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

54 Chapter 2: Basic Data Types

What level of precision do you need, and what type of machine do you have? We have
already seen that different machines store the same numeric value types differently. The
most extreme example is the difference between the manner in which the PC (especially
the older machines) store integers versus how a supercomputer stores integers.

In the PC, floating-point numbers are generally stored using 32-bits; double the number for
an int or short; the same as a long integer. How are the bits distributed? Remember, we
still need 1-bit for the sign, leaving us 31-bits to allocate between the mantissa and the
characteristic. Let’s look at some different combinations, disregarding the allocation
schemes we know are inadequate (Table 2.8.).

 Table 2.8.

Characteristi
c

Bits

Mantiss
a

Bits

Precision
(decimal points)

Magnitude
(Exponent Ranges)

3 28 228 = 268,435,456 � 8 23 = 8 � -22 to +22-1 � -4 to 3
4 27 227 = 134,217,728 � 8 24 = 16 � -23 to +23-1 � -8 to 7
5 26 226 = 67,108,864 � 7 25 = 32 � -24 to +24-1 � -16 to 15
6 25 225 = 33,554,432 � 7 26 = 64 � -25 to +25-1 � -32 to 31
7 24 224 = 16,777,216 � 7 27 = 128 � -26 to +26-1 � -64 to 63
8 23 223 = 8,388,608 � 6 28 = 256 � -27 to +27-1 � -128 to 127
9 22 222 = 4,194,304 � 6 29 = 512 � -28 to +28-1 � -256 to 255

10 21 221 = 2,097,152 � 6 210 = 1,024 � -29 to +29-1 � -512 to 511
11 20 220 = 1,048,576 � 6 211 = 2,048 �-210 to +210-1 � -1,024 to 1,023
12 19 219 = 524,288 � 5 212 = 4,096 �-211 to +211-1 � -2,048 to 2,047
13 18 218 = 262,144 � 5 213 = 8,192 �-212 to +212-1 � -4,096 to 4,095
14 17 217 = 132,768 � 5 214 = 16,384 �-213 to +213-1 � -8,192 to 8,191

Still not the easiest choice. How-
ever, looking at the table, since we
know that we are concerned with
level of precision, we know, for
each level of precision, what the
optimum number of bits is. In other
words, if we need 6-decimals of
precision, we should allocate 20-bits to the mantissa and 11-bits to the characteristic.
Allocating 21-bits to the mantissa and 10-bits to the characteristic would still leave us with
6-decimals of precision, but would decrease the magnitude of the number by 50% (in this
case, reducing the exponent value from -1,024 to 1,023 to –512 to –511).

 Table 2.9.

Level of Precision Mantissa Bits Characteristic
Bits

5 17 14
6 20 11
7 24 7
8 27 4

?���� So which one do we choose??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 55

The question, then, becomes: Which of the 4 combinations is most appealing? While there
is no universal agreement, and various software compilers still interpret the combinations

differently, the generally preferred
combination is to assign 24-bits to the
mantissa (yielding a 7 decimals of

precision) and 7 bits to the characteristic (allowing for a magnitude from E-64 to E+63),
shown in Figure 2.20. While this not a universal layout, it is quite typical.

Although, as we already know, it doesn’t make sense to talk about the range of real
numbers, but for illustration purposes, note that we could represent such numbers as:

0.1E-64 = 0.0001

through
+.16777215E+63 = +167,772,150,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

and all numbers in between, BUT only to 7 decimals of precision.

Double-Precision Real Numbers

he data type float that we have been discussing is also frequently referred to as a single
precision real number. As with integers (e.g., int vs. long), most application packages

allow you to increase the number of bits used to store a number. C++ also allows for a data
type called double (sometimes called a double precision real number), which, as could
have been predicted, uses 64-bits.

That becomes tricky. The number is stored using 64-bits, but how many bits are allocated
to each of the components is a function of the system and the software package being used.
C++ allows for bit-manipulation, meaning you can address, and manipulate, each of the
individual bits (many packages do not allow bit-manipulation, or bit-fiddling, as it is
referred to). Some systems use all the 32 additional bits for the mantissa (=> 256 =
72,057,594,037,927,900, implying the values from 0 to 72,057,594,037,927,900, or all
numbers up to 16 decimals of precision), others allocate less. ANSI (The American
National Standards Institute) C++ requires that the double type represent at least 10 digits
of precision (meaning that a minimum of 34-bits (total) must be assigned to the mantissa
since 234 = 17,179,869,184 (10 digits of precision) and 233 = 8,589,934,592 (9 digits of pre-
cision)).

If even larger numbers are needed, C++ also allows for a long double data type
(sometimes referred to as a quad word), which uses 128-bits. However, ANSI C++ only
requires that long double floating point data types provide 10 digits of precision (the same

Figure 2.20.
1-bit Sign 7-bit Exponent 24-bit Mantissa

T

?���� How are the bits distributed using 64-bits??

?���� What if I really do need more precise numbers??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

56 Chapter 2: Basic Data Types

as double). In this case, the numbers are of increased magnitude, but not necessarily of
increased precision. If, for example, there are 128-bits, 1-bit is allocated for the sign, only
34-bits to the mantissa, and the remaining 93-bits to the exponent, the largest value that
could be represented is

 +.17179869184E93 =
 17,179,869,184,000,000,000,000,000,000,000,000,000,000,000,000,000,
 000,000,000,000,000,000,000,000,000,000,000,000,000,000,00,000,000,000

Now, if you really want some computing power, some of the supercomputers, which have
128-bit word sizes and allow for quad (4-times) floating-point numbers, using 512-bits,
then

....

Well, you get the idea.

Numeric Data Types in C

efore we summarize the numeric data types available in C, let’s not forget that we
have also discussed the data type char. A character is a numeric data type also, but

we generally associate it with the ASCII (or EBCDIC) coding scheme. From that
perspective, we should keep in mind that.

1. All characters are stored as 8-bits as a numeric value, but according to a prescribed
coding scheme (ASCII or EBCDIC).

2. Mathematical operations CAN be performed on characters, but the results are not what
we might expect (i.e., ‘3’ + ‘4’ = ‘g’, or 51 + 52 = 103, which is the ASCII character
‘g’).

Numeric values are stored using various numbers of bits (always in multiples of 8,
however), and, as we have seen, can be manipulated to perform numeric operations. We
have already discussed most the numeric data types. The ones that were not previously
mentioned can be readily understood from their descriptions and an understanding of the
data types that were discussed12. A summary of the different data types we have discussed
so far is outlined in Table 2.10.

12 Remember, we are talking about C data types storage on the PC. The same data types are available on

different computers also, but the storage requirements differ.

B

What if I need large numbsers? �

The Data Type Character

?���� Why there so many duplicate data types in C?

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 57

We have talking about how C++ uses variables/data types on the PC, but as we have
previously noted, different computers (mainframes, minicomputers, and supercomputers)
store things differently. Nonetheless, C++ is intended to be a transportable language. That
means that we can use the same C++ code on a variety of machines, even though they
might process it a little differently. For example, while a short and an int are the same data
types on the PC, a short is 16-bits on a mainframe, while an int is stored on 32-bits
(remember, we also noted that things will be changing on PCs as well).

 Table 2.10.

Type Variable Bits Range Precision Comments
Character char

 unsigned
 signed

8
0 to 255
-128 to 127

 Stored via Coding
Scheme

Integer short
 unsigned
 signed
int13
 unsigned
 signed
long
 unsigned
 signed

16

16

32

0 to 65,535
-32,768 to 32,767

0 to 65,535
-32,768 to 32,767

0 to 4,294,967,295
-2,147,483,648 to 2,147,483,648

 Same as signed short
Same as unsigned int
Same as signed int
Same as signed int
Same as unsigned short
Same as signed short
Same as signed long

Same as long

Real float
double
long
double

32
64

128

 7
10 (min)
10 (min)

There is one other note to be made here. By default, ALL numeric data types are signed
(meaning they can take on positive as well as non-positive values). That means that an int
is the same as a signed int. Also note there is no such thing as an unsigned float (or
double or long double).

Don’t forget, characters are really numeric values. Therefore, by default characters are
signed. We will see more about characters in
Chapter 5, when we discuss the abstract data
type string.

C/C++ may be relatively primitive languages, but they are also very powerful ones. At this
point in time, some of our students frequently make the statement “COBOL is much better
than C, because you don’t have to know all of this stuff”. That is not quite true, but there is
some truth to it. In COBOL, you might declare a variable as ‘99’ (an integer) without

13 Remember our Caveat

?���� You mean that even the data type char is by default signed??

What data types are there in C++? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

58 Chapter 2: Basic Data Types

having to know how it is truly stored, but you are declaring it nonetheless. On the other
hand, there commands which can be issued in C++ and not in COBOL, and abstract data
types created using C, which can’t be constructed in COBOL. No pain, no gain.

Knowing about basic data types, how they are stored, and how they are manipulated has a
number of important implications for programmers:

1. Since the amount of space which each data type can vary (from 8-bits to 128-bits), the
programmer should be careful when assigning data types. If, for example, one knows
that the values assigned to a variable would never be outside the range 0 to 100, it
certainly wouldn’t make much sense to store them as long doubles (128-bits) when they
could be stored as a numeric byte (8-bits). The 120-bit difference (15 bytes) could be
considerable if, for example, each datum is stored in a 1,000 x 1,000 array (1,000,000
elements). There could be a savings of 15,000,000 bytes (15MB) if the data were stored
in the appropriate format.

2. While we have frequently made reference to how fast the computer is, it is obvious that

the more bits we use, and the more complex the data type (i.e., integers vs. floating-
point), the longer the operations to be performed on them will take. This is especially
true when going from unsigned integers to signed integers to floating-point numbers.

Other Data Types (Sort-Of)

here is one additional data type which is available in C++ (but not in C): a bool. These
are logical data types which are stored on 8-bits. They are equivalent to Boolean

variables (in FORTRAN) and take on either the value ‘true’ or ‘false’. They are extremely
useful to evaluate logical operations or as programs flags. Since true and false are binary
conditions, the logical assumption would be that they require only 1-bit (not byte) of
storage. In fact, since the byte is the basic unit of data retrieval, they are stored on 8-bits
(notice that if they were truly stored on 1-bit, they would be a unique data type, and not a
data structure). In effect, they are numeric bytes which can take on the values 010 =
000000002 if ‘false’ or some other value (e.g., 110 = 000000012) if ‘true’.

In some other computer languages, there are a few additional data types available. There
really aren’t (as the addendum ‘(sort-of)’ in the section heading implies), but it might
appear as if there are. Some of these might deserve some attention, although we will not
describe them in great detail. In fact, these are really basic abstract concepts, or logical
structures used for the organization of data. We include them here because often, they are
treated as basic data types.

T

Programming Implications

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 59

A Byte (in Pascal) is really the data type unsigned char in C. Consequently, it can take on
the integer values from 0 through 255.

Strings are not really a unique data type either but rather a chain of character bytes. From
our perspective, they are words, sentences, expressions,
etc. In some programming languages each string takes
up a fixed number of bytes in memory, in others the
amount of storage taken-up depends on the number of characters in the string (1-byte per
character). Each character in the string is stored in ASCII (or EBCDIC) format. We devote
an entire chapter (Chapter 5) to a discussion of strings, primarily because of some of the
manipulations which are performed on them.

Summary

ome of you may think that material contained in this chapter is dull and boring. It is.
But then again, so are arithmetic tables. However, just as we must suffer through

memorizing arithmetic tables, we must put to memory many of the concepts covered in this
chapter if we are to understand how the computer functions and deals with basic data.

The basic data types covered in this chapter are all there are. Period. In the section ‘Other
data types (sort-of)’ we mentioned some structures which are frequently referred to as data
types. They aren’t. There are only three (four, maybe) data types: Characters, integers and
floating-point numbers (the fourth might be unsigned numbers, whether numeric bytes and
unsigned integers (short, int, or long), but these are merely variations on a theme). If you
understand these basic data types, you understand (essentially) how the computer functions.

Chapter Terminology: Be able to fully describe these terms

% mantissa
/ MOD
carry-over modulus arithmetic
char numbers
characteristic of the exponent octal
characters precision
complementing quotient
DIV real numbers
double remainder
float signed char
int signed int
integer signed long
long unsigned char
long double unsigned int
magnitude unsigned long

S

Are there other data types? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

60 Chapter 2: Basic Data Types

Suggested Assignments

The assignments given below, along with the following review questions, are suggestions
as to how you might further, or strengthen, your understanding of the material covered in
this chapter. The review questions have definite answers; these assignments are intended as
exercises.

1. Memorize the Octal to Binary Conversion Tables. For convenience sake, it is repro-

duced below:

Binary Number: 000 001 010 011 100 101 110 111
Octal Number: 0 1 2 3 4 5 6 7

2. Memorize the Hexadecimal to Binary Conversion Tables. For convenience sake, it

is reproduced below:

Hex: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Review Questions

1. Convert the following decimal numbers to binary (assume a 16 bit Integer: 1 bit for

the sign, 15 bits for the value). If necessary, assume two’s complement.

 a. 100 d. -87
 b. 978 e. -5,345
 c. 32,767 f. -32,789

2. Convert the following Binary numbers (1 bit sign, 15 bit value) to Decimal, Octal and

Hex

 a. 0,110010111011111
 b. 0,001101110111011
 c. 1,010100111001100 (One’s Complement)
 d. 1,111111111111010 (Two’s Complement)

3. Add the following numbers in binary:

 a. 7810 + 7810 using one’s complement
 b. -AB16 + 708 using one’s complement
 c. 4395 + 647 using two’s complement

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 61

4. You are building a database of addresses. The question was raised as to whether zip

codes should be stored as numbers or strings. Explain what the differences are, and
what the advantages/disadvantages are for each.

5. A new machine has been developed which will use a 20-bit register. Reals will be

stored with a 1-bit sign and a 6-bit exponent. What will be the range for reals? What
will be the range for Integers?

Review Question Answers
(NOTE: CHECKING THE ANSWERS BEFORE YOU HAVE TRIED TO ANSWER

THE QUESTIONS DOESN’T HELP YOU AT ALL)

1. Convert the following decimal numbers to binary (assume a 16 bit Integer: 1

bit for the sign, 15 bits for the value). If necessary, assume two’s complement.

1.a. 100 DIV 2 = 50 100 MOD 2 = 0 10010 = 11001002
 50 DIV 2 = 25 50 MOD 2 = 0
 25 DIV 2 = 12 25 MOD 2 = 1 Chk: 26 + 25 + 22 = 64 + 32 + 4
 12 DIV 2 = 6 12 MOD 2 = 0 = 100
 6 DIV 2 = 3 6 MOD 2 = 0
 3 DIV 2 = 1 3 MOD 2 = 1 Ans: 0,000000001100100
 1 DIV 2 = 0 1 MOD 2 = 1

 b. 978 DIV 2 = 489 978 MOD 2 = 0 97810 = 11110100102
 489 DIV 2 = 244 489 MOD 2 = 1
 244 DIV 2 = 122 244 MOD 2 = 0 Chk: 29 + 28 + 27 + 26 + 24 + 21
 122 DIV 2 = 61 122 MOD 2 = 0 = 512+256+128+64+16+2
 61 DIV 2 = 30 61 MOD 2 = 1 = 978
 30 DIV 2 = 15 30 MOD 2 = 0
 15 DIV 2 = 7 15 MOD 2 = 1
 7 DIV 2 = 3 7 MOD 2 = 1 Ans: 0,000001111010010
 3 DIV 2 = 1 3 MOD 2 = 1
 1 DIV 2 = 0 1 MOD 2 = 1

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

62 Chapter 2: Basic Data Types

c. 32,767 DIV 2 = 16,383 32,767 MOD 2 = 1 32,76710 = 1111111111111112
 16,383 DIV 2 = 8,191 16,383 MOD 2 = 1
 8,191 DIV 2 = 4,095 8,191 MOD 2 = 1 Chk: 214+213+212+211+210+29 +28
 4,095 DIV 2 = 2,047 4,095 MOD 2 = 1 +27+26+25+24+23 +22+21+20
 2,047 DIV 2 = 1,023 2,047 MOD 2 = 1 = 16,384 + 8,192 + 4,096 +
 1,023 DIV 2 = 511 1,023 MOD 2 = 1 2,048 + 1,024 + 512 + 256 +
 511 DIV 2 = 255 511 MOD 2 = 1 128 + 64 + 32 + 16 + 8 + 4 +
 255 DIV 2 = 127 255 MOD 2 = 1 2 + 1
 127 DIV 2 = 63 127 MOD 2 = 1 = 32,767
 63 DIV 2 = 31 63 MOD 2 = 1
 31 DIV 2 = 15 31 MOD 2 = 1 Which we could have predicted
 15 DIV 2 = 7 15 MOD 2 = 1
 7 DIV 2 = 3 7 MOD 2 = 1
 3 DIV 2 = 1 3 MOD 2 = 1 Ans: 0,111111111111111
 1 DIV 2 = 0 1 MOD 2 = 1

 d. 87 DIV 2 = 43 87 MOD 2 = 1 8710 = 10101112
 43 DIV 2 = 21 43 MOD 2 = 1
 21 DIV 2 = 10 21 MOD 2 = 1 Chk: 26 + 24 + 22 + 21 + 20
 10 DIV 2 = 5 10 MOD 2 = 0 = 64 + 16 + 4 + 2 + 1
 5 DIV 2 = 2 5 MOD 2 = 1 = 87
 2 DIV 2 = 1 2 MOD 2 = 0
 1 DIV 2 = 0 1 MOD 2 = 1

 BUT we need to complement:

 0,000000001010111 � 1,111111110101000 (One’s Complement)
 + 1 Ans.
 1,111111110101001 (Two’s Complement)

 e. 5,344 DIV 2 = 2,672 5,345 MOD 2 = 0 5,34510 = 10100111000002
 2,672 DIV 2 = 1,336 2,672 MOD 2 = 0
 1,336 DIV 2 = 668 1,336 MOD 2 = 0 Chk: 212+210 +27+26+2520
 668 DIV 2 = 334 668 MOD 2 = 0 = 4,096 + 1,024 + 128 + 64 + 32
 334 DIV 2 = 167 334 MOD 2 = 0 = 5,344
 167 DIV 2 = 83 167 MOD 2 = 1
 83 DIV 2 = 41 83 MOD 2 = 1
 41 DIV 2 = 20 41 MOD 2 = 1
 20 DIV 2 = 10 20 MOD 2 = 0 BUT (again) we need to
 10 DIV 2 = 5 10 MOD 2 = 0 complement
 5 DIV 2 = 2 5 MOD 2 = 1
 2 DIV 2 = 1 2 MOD 2 = 0
 1 DIV 2 = 0 1 MOD 2 = 1

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 63

 11111
 0,001010011100000 => 1,110101100011111 (One’s Complement)
 + 1 Ans.
 1,111010110100000 (Two’s Complement)

 f. We Can’t because log(32,789)/log(3) = 4.516/0.30103 = 15.002 = 16
 and we only have 15-bits on which to store the integer value. However, we

could store the value as a signed long (if it were positive, we could also have
stored it as an unsigned int) using 32-bits (1-bit for the sign and 31-bits for
the value):

 32,789 DIV 2 = 16,394 32,789 MOD 2 = 1 32,76710 = 1000000000101012
 16,394 DIV 2 = 8,197 16,394 MOD 2 = 0
 8,197 DIV 2 = 4,098 8,197 MOD 2 = 1 Chk: 215 + 24 + 22 +20
 4,098 DIV 2 = 2,049 4,098 MOD 2 = 0 = 32,768 + 16 + 4 + 1
 2,049 DIV 2 = 1,024 2,049 MOD 2 = 1 = 32,789
 1,024 DIV 2 = 512 1,024 MOD 2 = 0
 512 DIV 2 = 256 512 MOD 2 = 0
 256 DIV 2 = 128 256 MOD 2 = 0
 128DIV 2 = 64 128 MOD 2 = 0 BUT (of course) we still must
 64 DIV 2 = 32 64 MOD 2 = 0 complement
 32 DIV 2 = 16 32 MOD 2 = 0
 16 DIV 2 = 8 16 MOD 2 = 0
 8 DIV 2 = 4 8 MOD 2 = 0
 4 DIV 2 = 2 4 MOD 2 = 0
 2 DIV 2 = 1 2 MOD 2 = 0
 1 DIV 2 = 0 1 MOD 2 = 1

 0, 0000000000000000100000000010101=> 1,1111111111111111011111111101010 (1’s Complement)
 + 1
 1,1111111111111111011111111101011 (2’s Complement)

2. Convert the following Binary numbers (1 bit sign, 15 bit value) to Decimal, Octal

and Hex

2. a. Decimal:

 0,1100101110111112 = 214 + 213 + 210 + 28 + 27 + 26 + 24 + 23 + 22 + 21 + 20
 = 16,384 + 8,192 + 1,024 + 256 + 128 + 64 + 16 + 8 + 4 + 2 + 1
 = + 26,07910

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

64 Chapter 2: Basic Data Types

 Octal:
 Chk: 6 * 84 + 2 * 83 + 7 * 82 + 3 * 81 + 7 * 80

 + 6 2 7 3 7 = 6 * 4,096 + 2 * 512 + 7 * 64 + 3 * 8 + 7 * 1
 = 24,576 + 1,024 + 448 + 24 + 7
 0, 110 010 111 011 1112 = 26,07910

 Hexadecimal:

 Chk: 6 * 163 + 5 * 162 + D = 13 * 161 + F = 15 * 160
 + 6 5 D F = 6 * 4,096 + 5 * 256 + 13 * 16 + 15 * 1
 = 24,576 + 1,280 + 208 + 15
 0, 110 0101 1101 11112 = 26,07910

2. b. Decimal:

 0,001101110111011 = + 212 + 211 + 29 + 28 + 27 + 25 + 24 + 23 + 21 + 20
 = + 4,096 + 2,048 + 512 + 256 + 128 + 32 + 16 + 8 + 2 + 1
 = + 7,09910

 Octal:

 + 1 5 6 7 3 Chk: 1 * 84 + 5 * 83 + 6 * 82 + 7 * 81 + 3 * 80
 = 1 * 4,096 + 5 * 512 + 6 * 64 + 7 * 8 + 3 * 1
 0, 001 101 110 111 011 = 4,096 + 2,560 + 384 + 56 + 3
 = + 7,09910

 Hexadecimal:

 + 1 B B B Chk: = 1 * 163 + B=11* 162 + D=13 * 161 + B=11 * 160
 = 1 * 4,096 + 11 * 256 + 11* 16 + 11 * 1
 0, 001 1011 1011 1011 = 4,096 + 2,816 + 176+ 11
 = +7,099

2. c. Decimal:

 Since negative, we must first complement: 1,010100111001100 → 0,101011000110011

 101011000110011 = 214 + 212 + 210 + 29 + 25 + 24 + 21 + 20
 = 16,384 + 4,096 + 1,024 + 512 + 32 + 16 + 2 + 1
 = -22,067
 Octal:

 5 3 0 6 3 Chk: = 5 * 84 + 3 * 83 + 6 * 81 + 3
 = 5 * 4,096 + 3 * 512 + 6 * 8 + 3
 101 011 000 110 011 = 20,480 + 1,536 + 48 + 3
 = -22,067

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 65

 Hexadecimal:
 Chk: = 1 * 163 + 6 * 162 + 3 * 161 + 3
 5 6 3 3 = 5 * 4,096 + 6 * 256 + 3 * 16 + 3

 = 20,480 + 1,536 + 48 + 3
 101 0110 0011 0011 = -22,067

2.d. Decimal:

 Since the binary number: 1,111111111111010 has the value ‘1’ in the left-most

position, the number is negative and we must complement the right 15-bits AND
add ‘1’ to the complemented result:

 000000000000101
 + 1
 0000000000001102 = - 610 = - 68 = - 616

 Are we sure?? As a check, let’s store the value –610.

 6 / 2 = 3 6 % 2 = 0 = 1102 = 00000000000001102 on 16-bits
 3 / 2 = 1 3 % 2 = 1
 1 / 2 = 0 1 % 2 = 1

 Since the value is negative (and stored as a two’s complement), we must

complement and add 1 to the complement:

 0000000000000110 The Value +6

 1111111111111001 One’s Complement
 + 1 Add 1
 1111111111111010 Two’s Complement

3. Add the following numbers in binary:

3.a. 7810 + 7810 using one’s complement:

 78 DIV 2 = 39 78 MOD 2 = 0 7810 = 10011102
 39 DIV 2 = 19 39 MOD 2 = 1
 19 DIV 2 = 9 19 MOD 2 = 1 Chk: = 26 + 23 + 22 + 21
 9 DIV 2 = 4 9 MOD 2 = 1 = 64 + 8 + 4 + 2
 4 DIV 2 = 2 4 MOD 2 = 0 = 78
 2 DIV 2 = 1 2 MOD 2 = 0
 1 DIV 1 = 0 1 MOD 2 = 1

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

66 Chapter 2: Basic Data Types

 Carry-over: 1 111 Chk: = 27 + 24 + 23 + 22
 0,000000001001110 = 128 + 16 + 8 + 4
 + 0,000000001001110 = 156 = 78 + 78
 0,000000010011100

3.b. -AB16 + 708 using one’s complement

 AB16 = A B

 1010 1011 = 0,000000010101011
 Complementing: 1,111111101010100
 708 = 7 0

 111 000 = 0,000000000111000

 Carry-Over: 111
 Adding the two we get: 1,111111101010100
 + 0,000000000111000
 1,111111110001100
 But Since the result is negative:

 111111110001100 Complemented = 0000000011100112 = 11510
 Which we know to be true since AB16 = 17110 and 708 = 5610 and
 -17110 + 5610 = 11510

3.c. 4395 + 647 using two’s complement:

 4395 = 4 * 52 + 3 * 51 + 9 * 50 647 = 6 * 71 + 4 * 70
 = 4 * 25 + 3 * 5 + 9 * 1 = 6 * 7 + 4 * 1

 = 100 + 15 + 9 = 42 + 4
 = 12410 = 4610
 1111100 101110

 124 DIV 2 = 62 124 MOD 2 = 0 46 DIV 2 = 23 46 MOD 2 = 0
 62 DIV 2 = 31 62 MOD 2 = 0 23 DIV 2 = 11 23 MOD 2 = 1
 31 DIV 2 = 15 31 MOD 2 = 1 11 DIV 2 = 5 11 MOD 2 = 1
 15 DIV 2 = 7 15 MOD 2 = 1 5 DIV 2 = 2 5 MOD 2 = 1
 7 DIV 2 = 3 7 MOD 2 = 1 2 DIV 2 = 1 2 MOD 2 = 0
 3 DIV 2 = 1 3 MOD 2 = 1 1 DIV 2 = 0 1 MOD 2 = 1
 1 DIV 2 = 0 1 MOD 2 = 1

 Adding: 1111100
 + 0101110
 101010102 = 17010

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 67

Since we are not dealing with negative numbers, we do not need to comple-
ment

4. You are building a database of addresses. The question was raised as to

whether zip codes should be stored as numbers or strings. Explain what the dif-
ferences are, and what the advantages/disadvantages are for each.

If Stored as a number (assuming, e.g., the zip code 12345):
It can not be stored as a numeric byte (Max value = 255)
It can not be stored as a signed integer
 (Max positive value = 32767; The zip code 32768 not stored)
It can not be stored as an unsigned integer
 (Max value = 65536; The zip code 65537 not stored)
It can be stored as a signed long (Max pos. value = 2147483647)
 or Unsigned long (Max Value = 4294967296)

 Therefore it will take 32-bits to store it as an integer and can perform mathematical

operations on it (do we ever really need to?). Operations are more complex than with
ASCII characters.

 If Stored as an ASCII Character:

 It will require 5-bytes (1-byte more than if stored as an integer). On the other hand,

operations (especially printing) will be much easier. Assuming there are 99999 Zip
codes (there are not), that means that it would require 399,996 bytes (3,199,968 bits)
to store them all as an integer. It would require 499,995 bytes (3,999,960 bits) to
store them all as ASCII characters (20% more storage).

5. A new machine has been developed which will use a 20 bit register. Reals will

be stored with a 1-bit sign and a 6-bit exponent. What will be the range/pre-
cision level for reals? What will be the range for Integers?

 Integers: Given 20-bits: 1-bit for the sign, 19-bits for the value = -219 to + 219 - 1
 => -524,288 to +524,287

 Reals: Given 1-bit sign, 6-bit exponent, 13-bit values:

 6-bit sign: Exponent Value = -25 to +25-1
 13-bit value: Range = 213 = 0 to 8,192

� 3 decimals of precision

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

68 Chapter 2: Basic Data Types

C/C++ Programming Assignments

1. This program is a slight variation on the programming assignment given in Chapter 1.

The difference is that we will print out the characters after we have stored them as dif-
ferent basic data types. To print them out, however, we will need to cast them.

#include <stdio.h> // Include the Standard Input-Ouput (IO) Headers File
int main(void) // MAIN is a function name which returns an integer
{ // This is similar to a BEGIN statement
char ch; // ch is the variable where we will store an ASCII character
int inumber;
long lnumber;
float fnumber; // BUT it is really a signed numeric byte (on 8-bits)

ch = 'T'; // Assign the ASCII Character T to the variable ch
printf("The values of character %c are %d decimal, %o octal and %x Hexadecimal\n",ch,ch,ch,ch);
// The output will appear as: The values of character T are 84 decimal, 124 octal and 54 Hexadecimal

ch = 38; // Assign ASCII 38 (decimal) to the variable
printf("The values of character %c are %d decimal, %o octal and %x Hexadecimal\n",ch,ch,ch,ch);
// The output will appear as: The values of character & are 38 decimal, 56 octal and 26 Hexadecimal

ch = 0135; // putting 0 (zero) in front assigns the Octal value
printf("The values of character %c are %d decimal, %o octal and %x Hexadecimal\n",ch,ch,ch,ch);
// The output will appear as: The values of character] are 93 decimal, 135 octal and 5d Hexadecimal

ch = 0X6b; // putting 0X (Zero X) in front assigns the hexadecimal val
printf("The values of character %c are %d decimal, %o octal and %x Hexadecimal\n",ch,ch,ch,ch);
// The output will appear as: The values of character k are 107 decimal, 153 octal and 6b Hexadecimal

ch = '3'; // Assign the Character 3
ch1 = 52; // Assign the Character 4
ch = ch + ch1; // Add the two together - What is the outcome?
printf("The outcome is %c, decimal %d\n",ch,ch1);

ch = 50 + 7;
printf("The outcome is %c, decimal %d\n",ch,ch); // output: The outcome is 9, decimal 57

ch = 211;
printf("The outcome is %c, decimal %d\n",ch,ch); // output: The outcome is �, decimal –45: See 2.a.
Below

ch2 = 211;
printf("The outcome is %c, decimal %d\n",ch); // output: The outcome is �, decimal 211: See 2.b.
Below

return(0); // Return a 0 Value to the function
} // End of function Main

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 69

2.a. In the above program (refer to the comment made). Why does ch1 print out as the
character � ??

b. In the above program (refer to the comment made). Why does ch2 print out as the

number 211 when in the line above ch1 prints out as the number -45 ??
3. Modifying the above program, print out your name BUT using the following pattern:

 letters: 1, 5, 9, 13, …. Enter the input as characters
 letters: 2, 6, 10, 14, …. Enter the input as integers
 letters: 3, 7, 11, 15, …. Enter the input as octal numbers
 letters: 4, 8, 12, 16, …. Enter the input as hexadecimal numbers

 For example, for my name (Peeter Kirs), I would enter (and print) as:

 ch = ‘P’;
 printf (“%c”);
 ch = 101;
 printf (“%c”);
 ch = 0146;
 printf (“%c”);
 ch = 0X74;
 printf (“%c”);
 ch = ‘e’;
 printf (“%c”);
 ch = 114;
 printf (“%c”);
 ch = 040; // NOTE: This is the space which separates first & last name
 printf (“%c”);
 ch = 0X4B;
 printf (“%c”);
 ch = ‘i’;
 printf (“%c”);
 ch = 0163;
 printf (“%c”);
 ch = 0X73;
 printf (“%c”);

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

70 Chapter 2: Basic Data Types

Addendum 2.1: Storing Floating-Point Numbers

We already know the basic layout for the data type float (from figure 2.20):

We also know that (generally), the left-
most bit is the sign, and can take-on
either ‘0’ or ‘1’ values.

The characteristic of the exponent is not that difficult to understand either. Since we have
7-bits, we have a total of 27 = 128 combinations, but since we know that the exponent can
be either negative or non-negative, we really only have ½ that number.

Not quite. The characteristic of the exponent is stored as a biased exponent. That means
that rather than storing the sign and the value separately, we add (bias) a constant term to
the true value. In our case, we would add the value 64 (which is ½ of 128) to the true value.
The exponent value –1710 (= 100012, or 00100012 on 7-bits) would actually be stored as
the value –17 + 64 = 4710 (= 1011112, or 01011112 on 7-bits); the exponent value 2310
(=101112 or 00101112 on 7-bits) would actually be stored as the value 23 + 64 = 8710
(=10101112).

There are some technical reasons, which we need not go into, but of course, it does circum-
vent the step of having to store the sign and the value separately.

To convert the decimal exponents to binary:

 -17 23
If Negative exponent then, else
1’s complement
Add 1:
2’complement
 Add 64

= 25 +23 + 22 + 21 + 20 = 26 + 24 + 22 + 21 + 20
= 32 + 8 + 4 + 2 + 1 = 47 = 64 + 16 + 4 + 2 + 1
 = 87

1-bit Sign 7-bit Exponent 24-bit Mantissa

 0 0 1 0 0 0 1
 1 1 0 1 1 1 0
+ 0 0 0 0 0 0 1
 1 1 0 1 1 1 1
+ 1 0 0 0 0 0 0
 0 1 0 1 1 1 1

 0 0 1 0 1 1 1
+ 1 0 0 0 0 0 0
 1 0 1 0 1 1 1

?����
So that means, just as with integers, that we use the left-most bit as the sign,

and the remaining 6-bits as the value, right ??

?���� Why ???

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 2: Basic Data Types 71

There is one additional consideration: the range of exponent values is actually –(26 – 1)
through +(26 – 1), or –63 through +63. The binary representation 00000002 (the decimal
value 0) is reserved for other uses (We need not go into that here).

To convert a binary exponent value back to decimal, of course, we have to first subtract the
value 6410 (= 10000002), which we already know is best accomplished by adding the two’s
complemented value of 6410 (= 01111112 + 1 = 10000002) to the characteristic. For
example, if we find the bit sequences used above:

If negative, then (2’s) complement and evaluate = 24 + 22 + 21 + 20 = 16 + 4 + 2 + 1
 = 23

 - (00100002 + 12)= - (100012)= - (24 + 1) = - (16 + 1) = -1710

One final quick note on characteristics: the range of exponent values is actually –(26 – 1)
through +(26 – 1), or –63 through +63. The binary representation 00000002 (the decimal
value 0) is reserved for other uses.

Converting the mantissa to binary requires a somewhat different algorithm than we used to

convert integers to binary, but it still has to do with
exponent position. For example, the integer 456 would
have the exponent positions shown at the left (in other

words, 456 = 4*102 + 5*101 + 6*100). If we were to consider the real number 456.789,
however, the exponent positions would appear as the do on the right (in other words,
456.789 = 4*102 + 5*101 + 6*100 +
7*10-1 + 8*10-2 + 9*10-3).

 Decimal 47: 0 1 0 1 1 1 1
Add –64: 1 0 0 0 0 0 0

 1 1 0 1 1 1 1

Decimal 87: 1 0 1 0 1 1 1
Add –64: 1 0 0 0 0 0 0

 0 0 1 0 1 1 1

Exponent Position: 2 1 0

Digit: 4 5 6

Exponent Position: 2 1 0 -1 -2 -3

Digit: 4 5 6 . 7 8 9

