
Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 300

CHAPTER 12:

BINARY TREES (and Recursion)

“A fool sees not the same tree “A tree is recognized by its fruit”
that a wise man sees” The Bible, Mathew 12:33

William Blake (),
The Marriage of Heaven and Hell, `Proverbs of Hell'

Introduction

n the previous chapter, we introduced the concept of allocating memory as we need it,
and releasing it when we don’t. The approach allowed us to efficiently set up lists which

could be easily linked and maintained. However, we still faced one major problem:
locating a record quickly. While we can reduce the time needed to find a record in the list
through the use of doubly linked lists or leveled lists, we know that as the lists becomes
large, searching can still be a prolonged process.
.

The major problem lies in the manner in which we laid out our
records. Even if we physically move the records such that they
are ordered in some fashion (i.e., the 1st record is located
before the 2nd, the 2nd before the 3rd, and so forth) because we
can not calculate the base address of any record on the list (as
we can with an array), we must still perform a sequential in
order to locate a record.

As we will see, a binary tree is intended to approximate the

I

���������	����������	����������	����������	�

 � �
 � �
 � �
 � � :

A binary search is the
fastest method of finding
a record, but requires
that records be physi-
cally ordered and stored
contiguously.

 ��								

��������������������������������								

 What is a Binary Tree?
 What Terms must I know?
 How do we construct the Trees?
����������������������������Why do we need pointers
 What C/C++ Code is needed?
����������������������������How do we search Binary Trees?

How are nodes inserted?

How are nodes deleted?
What is Recursion?
How does it work?

How do we traverse a tree?
What C/C++ Code is needed?

What else should I know?

 C
H

 12

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

301 Chapter 12: Binary Trees (and Recursion)

speed of a binary search while allowing us to dynamically allocate records and store them
non-contiguously.

You will notice also that this chapter include the term and Recursion (in parentheses) as
part of its title. Recursion is necessary to search for items in a binary tree. However, it is
not an emphasis of this chapter.

Binary Trees

 binary tree, as the name implies, is a hierarchical structure which can
have (at most) two branches. It is a linked list that incorporates a

binary search strategy.

Assume that we have the following list of integers: 9, 12, 4, 13, 10, 6, 3, 7, 14

Suppose that we wished to set these elements into a dynamically allocated linked list. First,
we would have to set up our structured data object to include a pointer to the next element
on the list. Assume the following structure and pointer variables:

Where pointer variable number will point the record we are storing, and lastnumber will
point to the previous number we stored.

Let’s assume that the first available RAM address (when we dynamically request using
malloc) is 15250. If we were to look at RAM after we had stored all of the elements on our
list, it might appear as:
 Figure 12.1.

15250 - 51 15252 - 55 15314 - 15 15316 - 19 15320 - 21 15322 - 25
9 15314 12 15320 4 15522

15522 - 23 15524 - 27 15589 - 90 15590 - 93 15625 - 26 15627 - 30

13 15589 10 15625 6 16020

16020 – 21 16022 - 25 16026 - 27 16028 – 31 16032 – 33 16034 – 37

3 16026 7 16032 14 NULL

A

struct numbrec
{ int value;
 struct numbrec * next; };
int main()
{ struct numbrec * number, * lastnumber;

C/C++Code 12.1.

����������������

 What is a Binary Tree ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 302

Where, dependent upon the availability of RAM, the elements may, or may not, be stored
contiguously.

None, right now. In fact a binary tree is basically just a linked list. The difference is in how
we set up the linkages between the elements on the list.

Recall how we previously performed a binary search. First, the list had to be physically
sorted. The main idea was to search the list by splitting it in half by eliminating those ele-
ments which we knew could not be the one we were looking for: elements which were too
large (or too small) were ignored. We would continue until we either found the element on
our list, we there were no more items on the list, meaning that the element we were seeking
was not on the list. The procedure would basically appear as below:

Figure 12.2.

Where the arrows indicate the midpoint of each of the (sub)lists.

When we examine Figure 12.2., we notice that there is a pattern to each of the sublists:
sublists containing smaller elements are to the left of the midpoint; sublists containing
larger elements are to the right of the midpoint. The figure also corresponds to manner in
which we would perform a binary search. For example, suppose we were looking for the
numeric value 14 on our list (along with 7, the number requiring the most number of
comparisons):

Figure 12.3.

Search 1: The middle of the list is (first + last)/2 = (0 + 8)/ 2 = 4 = 4

Array value:
Array offset: 0 1 2 3 4 5 6 7 8

3 4 6 7 9 10 12 13 14

3 4 6 7 10 12 13 14

3 6 7 10 13 14

 7 14

????���� This is a simple linked list. What’s the difference??

3 4 6 7 9 10 12 13 14

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

303 Chapter 12: Binary Trees (and Recursion)

Since 13 > 9, the value must be to the right of 9.

Search 2: The middle of the list is (first + last)/2 = (5 + 8)/ 2 = 6.5 = 6

Array value:
Array offset: 0 1 2 3 4 5 6 7 8

Since 14 > 12, the value must be to the right of 12.

Search 3: The middle of the list is (first + last)/2 = (7 + 8)/ 2 = 7.5 = 7

Array value:
Array offset: 0 1 2 3 4 5 6 7 8

Since 14 > 13, the value must be to the right of 13.

Search 4: The middle of the list is (first + last)/2 = (8 + 8)/ 2 = 8 = 8

Array value:
Array offset: 0 1 2 3 4 5 6 7 8

And we have found the number we are looking for

Suppose that we were to set up our linkages in such a fashion as to emulate Figure 12.2.
Conceptually, we might set up the following data structure:

Figure 12.4.

3 4 6 7 9 10 12 13 14

3 4 6 7 9 10 12 13 14

3 4 6 7 9 10 12 13 14

????���� What does this have to do with linked lists?

9

4

3

7

12

13 10 6

14

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 304

We would start by searching the element that would be in the midpoint element if the lists
were sorted. If the element we are looking for is less than that element, we would follow a
pointer leading us to all the elements smaller than that element. As with the sorted list, the
element found at that address would correspond to the midpoint of all elements smaller
than the number we are looking for. If the element we are looking for is greater than that
element, we would follow a pointer leading us to all the elements larger than that element.

Let’s look at how we might (once again) find the numeric value 14 on our linked list:

Comparison 1:

Since14 is larger than 9, we know
that if the value 14 is on the list, it
must be to the right of 9; we can
ignore the value 9 and all values to
the left of 9.

Comparison 2:

Since14 is larger than 12, we
know that if the value 14 is on
the list, it must be to the right of
12; we can ignore the value 12
and all values to the left of 12.

Comparison 3:

Since14 is larger than 13, we
know that if the value 14 is on
the list, it must be to the right of
13; we can ignore the value 13
and all values to the left of 13
(in this case, there aren’t any).

9

4

3

7

12

13 10 6

14

Figure 12.5.

9

4

3

7

12

13 10 6

14

Figure 12.6.

14

9

4

3

7

12

13 10 6

Figure 12.7.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

305 Chapter 12: Binary Trees (and Recursion)

Comparison 4:

We have found the value we
were looking for.

In this case, yes. But as we have seen before, nothing is entirely free. It is not always
possible to construct binary trees such that the number of comparisons needed will be the
same as those needed for a binary search. There are also storage, maintenance and
programming concerns, but we will address those later in this chapter.

We will see that shortly, but before we do, we need to go over some terminology.

Binary Tree Terminology

inary trees are associated with some specific definitions, and often rely on a unique set
of terms.

• A tree is a hierarchical structure.

In our tree, the numbers are arranged by
magnitude or size: Smaller numbers are
to the left and larger numbers are to the
right.

B

????����
This is the same as a binary search!! We found the element in 4

comparisons, just as we did with a binary search!! Will it always be the
same??

????���� How do we go about constructing a binary tree??

14

9

4

3

7

12

13 10 6

Figure 12.8.

����������������
A hierarchy is a group of persons or things arranged by rank, class, size,

or other category.

Smaller Values Larger Values

Figure 12.9.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 306

In the example we used above, the
value 9 is at the top of the tree (root).
As noted in our previous definition,
because a tree is a hierarchical
structure, all numbers smaller than 9
can be found to by following the
path(s) to the left; all numbers greater
than 9 can be found in the path(s) to the
right.

This includes the root, which may also be referred to as the root node.

This is a binary situation. Each node
can have either 0, 1, or 2 children (one
might say that this is really a ternary
situation, but we will forgo that
discussion). In our example, we saw
instances of each of the possibilities.
For example, the nodes containing the
values 9, 4, and 12 each had two
children. The nodes containing the
values 6 and 13 had one child each.
The nodes containing the values 3, 7,
and 14 had no children.

Sometimes a leaf is also referred to as a
terminal node, or as leaves, if there is
more than one leaf.

For our example, the nodes containing
the values 3 and 6, and 10 and 13 were
each other’s siblings.

parent Figure 12.13.

3 6

4

siblings

Smaller Values Larger Values

Figure 12.10.

 9

����������������Each element (record) in the list is referred to as a node. •

����������������The top of the tree is referred to as the root. •

����������������
Each node in the tree can have (at most) two children. Any node which
has a child is a parent

 •

12

13 10

6

7

14

The node containing the
value 12 has 2 children

Figure 12.11.

The node containing the
value 6 has 1 child

The node containing the
value 14 has no children

����������������A node which has no children is a leaf. •

7 14
The nodes containing the values
7 and 14 are both leaves

Figure 12.12.

����������������Children of the same parent are said to be siblings. •

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

307 Chapter 12: Binary Trees (and Recursion)

Self-evident; we do live in a monogamous society.

This depends on how it is viewed. In
Figure 12.14., the node containing the
value 9 is the ancestor of the nodes
containing the values 12, 10, 13, and 14.
The node containing the value 12 is the
ancestor of the nodes containing the
values 10, 13, and 14. The node
containing the value 13 is the
ancestor of the node containing the value 14 (as well as being the parent of that node).

Once again, this is dependent upon the nodes we are
addressing. In Figure 12.15., the nodes containing
the values 4, 3, 6, and 7 are the descendants of the
node containing the value 9. The nodes containing
the values 3, 6, and 7 are the descendants of the
node containing the value 4. The node containing
the value 7 is the descendant of the node
containing the value 6. The first node in an ordered
tree is also referred to as the oldest child, while the last is the youngest.

The node containing the value 9
(the root node) is at level 1; its
ancestors are at levels 2, 3 and 4.

����������������A child can have at most one parent. •

����������������The nodes superior to a child are their ancestors •

9

12

13 10

14

 Figure 12.14.

����������������The nodes inferior to a parent are that node’s descendants. •

9

4

6 3

7

Figure 12.15.

����������������
The level of a node is established by setting the root level at 1 and
setting its children to lower levels. •

9

4

3

7

12

13 10 6

14

Figure 12.16. Level 1

Level 2

Level 3

Level 4

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 308

For our tree, which has 4 levels, the depth, or height, is four (4)

For our example:

Full Tree:

Subtrees:

For example, we get a forest if
we remove the root of a tree. In
this case, we also have subtrees:
The left subtree and the right
subtree.

right subtree left subtree

����������������A forest is the set of disjoint (separate) trees. •

4

3

7

6

12

13 10

14

Figure 12.18.

Levels 2 – 3:

����������������A tree can be divided into subtrees (which can themselves be divided
into subtrees).

 •

Figure 12.17.
 9

4

3

7

12

13 10 6

14

 4

3

7

6

 12

13 10

14

 4

3

 4

7

6

 12

10

 12

13

14

7

6 13

14

Levels 2 – 4:

Levels 2 – 4:

Levels 3 – 4:

����������������A tree can be divided into subtrees (which can themselves be divided
into subtrees). •

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

309 Chapter 12: Binary Trees (and Recursion)

For our example, the tree has a degree of 3 (levels minus the root).

As we will see later, this is (generally) a good quality.

Constructing Binary Trees

onstructing a binary tree is relatively simple, but constructing a “good” tree (we will
see examples of “good” trees vs. “bad” trees later) is often difficult. The manner in

which we established our tree was perhaps the simplest way (although we admit that we
‘rigged’ the order in which they were placed in the unordered list). We took the first
element in the list and established it as the root. We then took each of the remaining
elements (in order; we’ll add them on two at a time to save space) and determined where
we should put them (smaller values to the left; larger values to the right):

Step 1: Set in the root: 9 12, 4, 13, 10, 6, 3, 7, 14

Step 2: Taking each other element in the list, put it in its appropriate position in the tree.
In other words, elements less than the root should be to the left of it; elements greater than
the root should be to the right of it.

9, 12 4 13, 10, 6, 3, 7, 14

C

����������������The degree of a tree is the maximum degree of nodes in a tree. •

����������������A tree is bushy if it has (relatively speaking) many leaves •

????���� NOW, How do we go about constructing a binary tree??

root Figure 12.19. 9

4 12

9

 Figure 12.20.

Since 12 > 9, position it
to the right of 9

Since 4 < 9, position it
to the left of 9

 What Terms must I Know ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 310

Step 3: Continue until all elements have been added

 9 12 4 13 10 6 3 7 14

 9 12 4 13 10 6 3 7 14

 9 12 4 13 10 6 3 7 14

 9 12 4 13 10 6 3 7 14

Figure 12.21.

9

12

13

4

Is 13 > 9 ?? YES: Go right

 Is 13 > 12 ?? YES: Go right

Is 12 a leaf ??
YES: Insert a new node

9

12

13 10

4

Is 10 > 9 ?? YES: Go right

Is 10 > 12 ?? NO: Go left

Is 12 a leaf ??
YES: Insert a new node

Figure 12.22.

Is 3 > 9 ?? NO: Go left
Is 3 > 4?? NO: Go left

 Is 4 a leaf ??
YES: Insert a new node

9

12

13 10

4

6 3

Figure 12.24.

Figure 12.23.

9

12

13 10

4

6

Is 6 > 9 ?? NO: Go left Is 6 > 4?? YES: Go Right

Is 4 a leaf ??
YES: Insert a new node

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

311 Chapter 12: Binary Trees (and Recursion)

 9 12 4 13 10 6 3 7 14

 9 12 4 13 10 6 3 7 14

And the tree is complete.

Using Pointers in Binary Trees

e already know that trees require pointers, and that the inferior nodes in a subtree are
either to the left (if they are smaller) or to the right (if they are greater). Therefore,

each node must have two pointers: one which points to nodes smaller than it, and one
which points to nodes greater than it. Let’s call the pointer which points to smaller nodes
the left pointer, and the pointer which points to nodes greater than it the right pointer. If the
left pointer is NULL, there are no nodes smaller than it in that branch. If the right pointer is

W

9

12

13 10

4

3 6

7

Is 7 > 9 ?? NO: Go left
Is 7 > 4?? YES: Go right

Is 7 > 4?? YES: Go right

Is 6 a Leaf??
YES: Insert the node

Figure 12.25.

Figure 12.26.

9

12

13 10

14

4

3 6

7

Is 14 > 9 ?? YES: Go right

Is 14 > 12 ?? YES: Go right

Is 14 > 13 ?? YES: Go right
Is 13 a Leaf??

YES: Insert the node

????���� How are the nodes actually linked together??

 What is a Binary Tree ? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 312

NULL, there are no nodes in that branch greater than it. If both the left and right pointers
are NULL, the node is a leaf.

Consider the following node structure and variable declaration:

In this case, each record will require 2 + 4 + 4 = 10-bytes of storage. We will also need two
pointer variables: root, which will point to the root node, and node, which will point to the
node we are considering.

If we were display the structure in hierarchical form, it might appear as:

More realistically (since memory is not hierarchical), to store our tree in RAM (as we did
as a simple linked list in Figure 12.1.) we might see (Figure 12.28):

struct tree
{ int value;
 struct tree * left, * right; };
int main()
{ struct tree * node, * root;

C/C++ Code 12.2.

15250 -
51 9

15250 -
55

15522

15256 -
56

15314

15314 -
15
12

15316 -
19

16022

15320 -
23

15529

15522 -
23
4

15524 -
27

17316

15525 -
28

16032

16022 -
23
10

16024 -
27

NULL

16028 -
31

NULL

15529 -
30
13

15531 -
34

NULL

15535 -
38

18613

18613 -
14 14

18615 -
18

NULL

18619 -
23

NULL

16032 -
33
6

16034 -
37

NULL

16038 -
41

17401

17316 -
17
3

17318 -
21

NULL

17322 -
25

NULL

17401 -
02
7

17403 -
06

NULL

17407 -
10

NULL

Figure
12.27.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

313 Chapter 12: Binary Trees (and Recursion)

 Figure 12.28.

15250 - 51 15252 - 55 15256 - 56 15314 - 15 15316 - 19 15320 - 23
9 15522 15314 12 16022 15529

15522 - 23 15524 - 27 15525 - 28 15529 - 30 15531 - 34 15535 - 38

4 17316 16032 13 NULL 18613

 16022 - 23 16024 - 27 16028 - 31 16032 – 33 16034 – 37 16038 – 41
 10 NULL NULL 6 NULL 17401

17316 - 17 17318 - 21 17322 - 25 17401 - 02 17403 - 06 17407 - 10

3 NULL NULL 7 NULL NULL

18613 – 14 18615 - 18 18619 - 22

14 NULL NULL

Inserting Nodes into a Binary Tree in C

he procedure follows the steps we used above:

T

????���� How do we construct the list in C ??

1. Get the first value, dynamically allocate enough RAM for it, store the value, and
set the nodes pointer’s to NULL. Since this is the 1st node, make it the root.

2. Get the next value. dynamically allocate enough RAM for it, store the value, and
set the nodes pointer’s to NULL.

3. Starting with the root, compare the value with every node in the tree.
a. If the new value is larger than the tree node value, follow the right pointer
b. If the new value is smaller than the tree node value, follow the left pointer

4. Continue until the pointer is NULL.
5. Have the NULL pointer point to the new node’s address
6. If there are more records, go to step 2.

Constructing A Binary Tree

 Why do we need pointers?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 314

The relevant code necessary is given in C Code 12.3. The only difference is that we will
prompt the user for an integer to insert, and then set up the appropriate links.

As we did when we set up our linked lists, we use the pointer variable present to keep track

of a node already on the tree, and the pointer
variable previous to keep track of the node
which points to the existing node.

 struct tree // Our structure template
 { int value; // The number
 struct tree * left, * right; }; // the pointers
 void main()
 { int input, numnodes = 0;
 struct tree * node, * root, * present, * previous; // Our pointer variables
 char number[5]; // for the user input
 do { printf("Enter an integer to add, Or enter 0 (zero) to quit: "); // Prompt
 if ((input = atoi(gets(number))) > 0); // Get input and convert
 { node = (struct tree *) malloc(sizeof(struct tree)); // Allocate memort
 node -> value = input; // Store value
 node -> left = node -> right = NULL; // initialize pointers to NULL
 if (numnodes++ == 0) root = node; // If the first entry, make it the root
 else // Otherwise …
 { present = root; // start at the root, and continue
 while (present != NULL) // until we point to NULL
 { previous = present; // store addr. of the node in the tree
 if (node -> value > present-> value) // is the new value larger?
 present = present -> right; // then go to the right
 else present = present -> left; } // new value smaller?? Go Left
 if (node -> value > previous -> value) // Should we go to the right?
 previous -> right = node; // set in the right pointers ..
 else previous -> left = node; }} // .. or set in the left pointers.
 } while (input != 0); } // Keep going until 0 entered

 C/C++ code 12.3.

????���� How do we find a node in a binary tree ??

 What C/C++ Code is needed?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

315 Chapter 12: Binary Trees (and Recursion)

Searching a Binary Tree

earching a binary is very similar to our binary search procedure. Suppose we were
looking for the value 6 in our tree.

Step 1: Start at the root and determine

which way to go (unless 6 is at the
root): Since smaller than 9, go left.

Step 2: Compare the value at the address

contained in the previous pointer.
There are four possibilities:

1. The value was found
2. The previous Address was NULL (the value is NOT on the list).
3. The value is greater than the value we are searching for: Go Right.
4. The value is smaller than the value we are searching for: Go Left.

Repeat Step 2 until the record is found or determined not to be on the list.

In our case, since the value 6 is greater than 4,
we would go right (where we would find the
value we are looking for).

The c code necessary to find a record is also quite simple. In C Code 12.4. we provide the
relevant code necessary to find a (user-inputted) value in the tree. We also add one variable
(int nsearches) which will count (and print out) how many comparisons were necessary to
find an element in the tree.

Since we know that using a binary search on a sorted array of this size requires a maximum
of:

 log2 n = log2 9 = 3.169925 = 4 comparisons

and an average of log2 n – 1 or 2.17 comparisons, we are interested in how our binary
tree search compares to a binary search. Table 12.1. gives the output from our program,
assuming we were searching for the integers from 1 through 15 (inclusive).

S

Smaller Values Larger Values

Figure 12.29.
9

9

4

Figure 12.30.

9

4

6

Figure 12.31.

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 316

The above program produces the output:
 Table

12.1.

Search
Value

Sequential
Searches
Needed

Binary
Searches
Needed

Binary
Tree

Searches
Needed

Search
Value

Sequential
Searches
Needed

Binary
Searches
Needed

Binary
Tree

Searches
Needed

1 10 3 5 9 1 1 1
2 10 3 5 10 5 3 3
3 7 3 3 11 10 4 4
4 3 2 2 12 2 2 2
5 10 3 4 13 4 3 3
6 6 3 3 14 9 3 4
7 8 4 4 15 10 4 5
8 10 4 5 16 10 4 5
 AVE: 7.2 3.1 3.6

Even with a list as small as ours, the number of comparisons needed in for a binary tree
search is considerably less than for a sequential search. The number of comparisons needed
versus a binary search, however, is slightly more.

 int nsearches = 1; // we always need at least 1 comparison
 printf("Enter a number to search for: ");
 input = atoi(gets(number));
 node = root; // start at the top
 while ((node != NULL) && (node -> value != input)) // while not found
 { if (input < tree -> value) // value smaller??
 node = node -> left; // then go left
 else // value greater??
 node = node -> right;
 nsearches++;
 }
 if (node == NULL) // NULL encountered??
 printf("The number %d is not on the list (%d searches required)\n",
 input, nsearches);
 else // otherwise, it was found
 printf("The number %d was found in %d searches\n",
 node -> value, nsearches);

 C code 12.4

????���� Why is it more?? I thought it was the same as a binary search !!

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

317 Chapter 12: Binary Trees (and Recursion)

Not quite. For one thing, in a binary search, we can find out if a
value is not on the list when we determine that it is not where it
supposed to be. In a binary tree, we have to traverse the tree and

find a NULL pointer
before we can determine that the value is not
where it should be.

Yes, some. We admitted early on that our list was contrived. What we meant was that we
selected the values, and the order in which the placed in the tree in a fashion which make
the tree optimal. Suppose that we had chosen the following list: 3, 4, 6, 7, 9, 10. 12, 13,
14.

This list contains exactly the same elements,
BUT it is already in order. If we were to
follow the same procedure in constructing the
binary tree as we did before, it would appear
as it does in Figure 12.32.

Notice that if we were to attempt to find a
value in this tree, we would have no better a
comparison rate than we would for a simple
sequential search. In fact this is nothing more
than a simple linked list.

As we mentioned in our definitions section, a good tree is a ‘bushy’ tree. This one looks
pretty spindly.

A little bit if both.

� �������� �������� �������� �����������
To turn; as in a pivot

????���� Are there other searching disadvantages??

3

4

6

7

9

10

12

13

14

Figure 12.32.

????���� Is maintaining the tree as easy as linked lists, or as difficult as sorted
arrays??

 How do we search Binary Trees?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 318

Inserting Nodes into Binary Trees

dding a node to a binary tree is generally not a problem, at least if we are only adding
a few. Suppose that we wanted to add nodes containing the values 11, 5 and 2 to our

tree. It would now appear as:

Not a problem. Our tree is actually ‘bushier’ than before. However, if we wished to add the
values 15, 18, and 19 (instead of the above values) to our tree. It might now appear as:

Our tree is once again beginning to look a little
‘spindly’. The tree is no longer balanced,
meaning the heights of the left subtree
and right subtree vary by more than 1
level.

Optimally, the tree should be rearranged as1:

1 Other schemes could also be considered optimal

A
9

12

13 10

14

4

3 6

7 5 11 2

Figure 12.32.

Figure 12.33.
9

12

13 10

14

4

3 6

7
15

18

19

����������������

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

319 Chapter 12: Binary Trees (and Recursion)

Consider the following differences in tree height:

As we saw in our ‘worst case’ example, where the tree only had one branch, there is a big
difference in terms of the number of comparisons required to find a node. If we used the
same search program as we did before (C Code 12.4), and looked at the number of
comparisons needed for all integers between 1 and 20, we would find that the following
number of comparisons were needed on each of the lists:

Figure 12.34. 10

6

3 9

7 4

14

18 12

19 13 15

????���� What’s the difference??

Level 7

Level 6
Level 5

Level 4

Level 3

Level 1

Level 2

Figure 12.35.

Our balanced tree has three levels
less than our unbalanced tree

????���� What difference does it make if the tree is balanced or not??

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 320

 Table 12.2.

Search
Value

Unbalanced
Tree Searches

Needed

Balanced Tree
Searches
Needed

Search
Value

Unbalanced
Tree Searches

Needed

Balanced Tree
Searches
Needed

1 5 5 11 4 4
2 5 5 12 2 3
3 3 3 13 3 4
4 2 4 14 4 2
5 4 5 15 5 4
6 3 2 16 7 5
7 4 4 17 7 5
8 5 5 18 6 3
9 1 3 19 7 4

10 3 1 20 8 5
 AVE: 4.4 3.8

This may not seem like much of a
difference (even though 3.8 is
70% of 4.4), but once again, it is
because our list is small. In point of fact, it is a substantial savings.

There are procedures for balancing the tree – We will see these in the next chapter.

Deleting Nodes from a Binary Tree

s with adding nodes from the tree, it depends on which node(s) we wish to delete.
Suppose that we wish to delete the elements 7 and 14, such that the tree would appear

as:

Once again, not a problem. But that is be-
cause the nodes containing the values 7
and 14 were leaves, and thus didn’t point
to any other nodes. The only change we
would have to make is to have the
pointers which contained the addresses
for the nodes 7 and

A
Figure 12.36.

9

12

13 10

4

3 6

????���� How do we go about balancing the tree??

????���� How do we delete nodes from the tree??

How do we Insert Nodes into a Binary Trees?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

321 Chapter 12: Binary Trees (and Recursion)

14 (in this case, 6’s and 13’s right pointers point to NULL). Of course, we could then free
the memory which we have been using to store the nodes.

In other cases, it is almost that easy. If,
for example, we wished to delete the
node containing the value 6 (from our
original tree), all would have to do is
have 4’s right pointer point to 7 (again,
we would free the RAM allocated to hold
the node containing the value 6). The tree
would appear as it does in Figure 12.37.

Suppose, however, that we wanted to delete
the root. The root has two children, each of
whom also have two children. If we try and
make the node containing the value 12 the
root (which is in the right subtree), how do we
include the left subtree? We could, perhaps
have 10’s left pointer point to 4, which yield
the tree given in Figure 12.38., but if we did, it
is quite obvious that the is not at all balanced.

Our only solution is to once again re-
structure the tree (balancing as we do), so
that it appears as it does in Figure 12.39

As with balancing binary trees, we will see this in the following chapter.

In order to traverse a binary tree, we need to apply a technique called recursion.

Figure 12.37.
9

12

13 10

4

3 7

14

Figure 12.38.

7

6

12

13 10

14

3

4

Figure 12.39. 7

12

13 10

4

3 6

14

????���� What about the procedures necessary to do this??

????���� How do we list the nodes of a binary tree in order??

How do we Delete Nodes from Binary Trees?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 322

Recursion

e have actually seen the concept of recursion pre-
viously. If you will remember, the recursion was

necessary for the quicksort routine (see Chapter 9).

When a function calls itself, it ‘pops-down’ a level. When it returns from a call, it ‘pops-
up’. Initially, this may seem like a strange concept. Why
would a function call itself??

In fact, it is a very useful concept (and as we will see, the easiest way in which to traverse a
binary tree). Before we do that, however, let’s take a look at a simple recursive program.
Let’s write a program which will find the factorial of a number2. We know that a factorial
is:

n! = n * (n – 1) * (n – 2) … * 1 Where n is the number we wish to find the factorial of

For example, 5! = 5 * 4 * 3 * 2 * 1 = 120. The recursive code needed might appear as:

Notice that function main calls function factorial once, passing it the value 5 which will be
stored into variable number in the function. In function factorial, we check to see it the
integer passed (the contents of location number) is the numeric value 1, otherwise, calls
itself, passing the value one less than it received. In other words, each time factorial is

2 This program could be written without using recursion

W ���������	����������	����������	����������	�

 � �
 � �
 � �
 � � :

Quicksort is the fastest
internal sort method

����������������A recursive function is one which calls itself. •

#include <stdio.h>
int factorial(int number);
void main()
{ int i = 5;
 printf("The factorial of %d = %d\n",i, factorial(i));
}
int factorial(int number)
{ if (number == 1)
 return 1;
 else
 return (number * factorial(number - 1)); }

C Code 12.5

What is Recursion?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

323 Chapter 12: Binary Trees (and Recursion)

called, it receives the number 5, 4, 3, 2, and 1. When it starts returning values, it returns 1,
2 (1 * 2), 6 (2 * 3), 24 (6 * 4), and finally 120 (24 * 5).

It sounds confusing at first, but lets follow each of the variables each time the function
factorial is called. (see Figure 12.40.). In the figure, the arrows pointing down show the
values passed as the function ‘pops-down’. The arrows pointing up show the values passed
as the function ‘pops-up’. Arrows pointing to the right are the commands being executed
by the function while it is at that level.

Let’s start when the function is first called from the function main: factorial(i)

In main, I contains the value 5, so that is the value we initially pass to function factorial.
Figure 12.40.

C
all N

o.

Called
From

value R
eceived

(num
ber)

num

ber == 1 ??

value Passed
T

o factorial
(num

ber – 1)

value R
eturned

from
 factorial

number * value returned
1 Main 5 No 4 24 24 * 5 = 120

2 Factorial 4 No 3 6 6 * 4 = 24

3 Factorial 3 No 2 2 2 * 3 = 6

4 Factorial 2 No 1 1 1 * 2 = 2

5 Factorial 1 Yes N/A N/A

Value returned to function main

In the 1st call to function factorial, number receives the value 5. We can thus overlook the
if statement (if (number == 1)) and call factorial again, this time passing it the value
number –1 (or the integer 4). As we can see from the above figure, the same is true for the
2nd through 4th calls (where we are ‘popping-down’) to factorial where the values 3, 2, and
1 are passed. In the 5th call to function factorial, the integer 1 is passed to number and we
execute the statements:
 if (number == 1)
 return 1;

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 324

At which time we stop popping down and start popping up. For
our program, this is when all of the calculations will be made.
Upon our return to the 4th call to function factorial, we execute
the statement: return (number * factorial(number - 1));. In other
words, the 5th call (our last pop-down) returned the integer 1.
Therefore the statement return (number * factorial(number - 1))
is equivalent to the statement return (number * 1), where the

value of number is 2, and the expression evaluates to 2 * 1 or 2.

The same procedure is followed each time the function pops-up (see the rightmost 2
columns in Figure 12.40.). Eventually, when the
function pops-back to the main function, the value
120 (5!) is returned.

Traversing a Binary Tree

irst let’s look at the placement of the nodes in our binary
tree. Let’s also assume that we wish to list the values in

ascending order (from smallest to largest). Therefore, if we
wish to find the 1st (smallest) element on a list, we have to go
as far left as possible. Similarly, the largest element on the list
will be as far right as we can go. Our basic algorithm would then be:

Essentially, yes. Consider our tree
(duplicated in Figure 12.41.). If we go as far
left as we can, we find the smallest value
(3). When we pop back up, we find the
second smallest number (4). We go right (if
we can), and then try and go left. When we

���������	�
 � � ���������	�
 � � ���������	�
 � � ���������	�
 � � :
Upon return from a call
to a function, the state-
ment immediately fol-
lowing the call is exe-
cuted

F ���������	�
 � � ���������	�
 � � ���������	�
 � � ���������	�
 � � :
In a binary tree, smaller
values are to the left and
larger values to the right

1. ‘Pop-down’ to the left as far as possible. When we can’t go any further, print the
contents of the node

2. When we ‘Pop-up’, print the contents of the node.

3. If we can go right, go right, but go left if we can.

4. Repeat steps 1 – 3.

Traversing a tree in order

????���� That’s it ??

9

12

13 10

14

4

3 6

7

Figure 12.41.

????���� OK, what does this have to do with listing the nodes of a binary tree in order??

How does Recursion
Work??

 �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

325 Chapter 12: Binary Trees (and Recursion)

can’t, we pop up, and print the contents of the node (6). We then again try and go right (to
the node containing the value 7) try to go left (which we can’t) and then print the contents
of the node upon our return. The procedure continues until we have printed out the entire
list: 3 4 6 7 9 10 12 13 14

Consider the recursive function printtreeinorder given in C Code 12.6. This code assumes
that the data type struct tree has associated with a variable root (where root will hold the
address of the root node). To display the tree in order, all we need to do is pass the address
of the root:

Function preinttreeinorder keeps passing the
address of its left pointer until the address is
NULL. Upon return (pop-up), it prints the
value of the node. The first print would occur
as shown in Figure 12.42.

After printing the value, the function
again calls itself, this time passing the
address of the node to its right.
However, since the address is NULL, it
returns. Because this was the last
statement in the function, it pops-up to
the previous call, and again prints the
value of the node

????���� How do we really do this ??

struct tree
{ int value;
 struct tree * left, * right; };
void main ()
{ struct tree * root, ……

 printtreeinorder (root);

............ }
void printtreeinorder(struct tree * node)
{ if (node == NULL)
 return;
 printtreeinorder(node -> left);
 printf("%4d",node -> value);
 printtreeinorder(node -> right);
}

C/C++ Code 12.6.

NULL

9

4

3 Print: 3

Figure 12.42.

9

4

3

NULL

Figure 12.43.

Print: 4

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 326

The function again calls itself passing the address of
the right node. Since the address is not NULL, it
immediately passes the address of the left node,
continuing until the address is NULL. Upon return,
it prints the value of the node.

The procedure repeats until all the nodes have been printed.

And the final node is printed
out. The program will test to
see if the node’s right pointer
is NULL, and since it is, it
will pop-up.

 Print: 10

NULL

Figure 12.44.

Print: 6

9

3 6

4

NULL

 Print: 7

4

9

3 6

7

Figure 12.45.

NULL

Print: 9

4

9

3 6

7

9

12

10

4

3 6

7
NULL

9

12

10

4

3 6

7 NULL

Print: 12

NULL

Print: 13

9

12

10

4

3 6

7

13

NULL

Print: 14

9

12

10

4

3 6

7

13

14

????���� Could we print out the tree in a different order ??

How do we Traverse a Tree?? �

What C/C++ Code is needed?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

327 Chapter 12: Binary Trees (and Recursion)

Yes, we could print out the tree in reverse order, for example, simply by trying to right
first, and then going left when we couldn’t go any farther. We could also print the tree
from top (i.e., from the root) to bottom (i.e., to the leaves), either going left first, or right
first. For our purposes, however, all we need to know is how to print out the tree in order.

Summary

hen we began our discussion about searching and sorting, we noted that there were
trade-offs involved. Through the use of linked lists, we saw that we were able to

maintain some order to our lists, as well as to take advantage of dynamic memory
allocation, but finding an element on the list still (basically) required a sequential search.
Binary trees are data structures which allow us to use linked lists and to find elements
quickly.

Still, there is a price to pay for our flexibility. As we saw, maintenance can be troublesome:

In the next chapter, we will consider some additional trees, and will examine procedures
for maintaining balanced trees.

W

1. Adding elements onto a binary tree can quickly lead to a tree losing its
‘bushiness’ and therefore reducing its searching advantages.

2. Deleting nodes from a binary tree may require a restructuring of the tree.

3. Restructuring a tree can become tedious and complex.

Problems with Binary Trees

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 328

Chapter Terminology: Be Able to Fully Describe these terms

Ancestor Node
Balanced Tree NULL Pointer
Binary Tree Parent
Branch Popping-down
Bushiness Popping-up
Children Printing a tree in order
Degree of a Tree Recursion
Depth (or Height) Right Pointer
Descendant Root
Forest Sibling
Hierarchical Structures Subtree
Leaf Traversing a tree
Left Pointer Tree

Review Questions

1. Explain the advantages and disadvantages of binary trees.
2. Given the list of integers: 30, 67, 12, 7, 45, 38, 22, 9, 34, 33, 32

A. Construct a binary tree using the method discussed (i.e., the first element becomes
the root, the others are added accordingly)

B. Identify the left subtree
C. Identify the right subtree
D. Identify all of the leaves
E. Identify all the ancestors of the node containing the value 9
F. Identify all of the descendents of the node containing the value 45
G. Show the depth of the tree
H. Is the tree balanced? Why or why not?

3. For the problem above, assume that the following structure was used:

 struct tree { int value;
 struct tree * left, * right; };
 If we look at RAM we see:

5000 - 5015 5016 - 5079 5080 - 5084 5085 - 5178 5179 - 5212
Available Unavailable Available Unavailable Available

5213 - 5286 5287 – 5339 5340 - 5361 5362 – 5484
Unavailable Available Unavailable Ava Ilable

 Assume that RAM is assigned on a first-come-first-served basis.
 Show ALL of the pointer assignments.

What else should I know?? �

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

329 Chapter 12: Binary Trees (and Recursion)

4. Given the list: Anita, Juan, Tamara, Olaf, Radhika, Chang, Lambros, Colleen,
Marje, Zeke, James

Set up an OPTIMAL binary tree to print our the names Alphabetically.

5. What is a recursive function?

Review Question Answers (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

1. Explain the advantages and disadvantages of binary trees.

 Advantages Disadvantages
 Linked Lists Maintenance (see list in Summary)
 Dynamic Memory Allocation
 Quick Searches

2. Given the list of integers: 30, 67, 12, 7, 45, 38, 22, 9, 34, 33, 32

The Tree is NOT balanced since the right subtree has 7 levels and the left subtree has only 3

The Left Subtree has the nodes:
12, 7, 22, 9

The Right Subtree has the nodes:
67, 45, 38, 34, 33, 32

30

67 12

7 45

38

22

9

34

33

32

Leaf

Leaf

Leaf

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

45’s Descendants

9’s Ancestors

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 330

3. For the given structure, each node will require a total of 2 + 4 + 4 = 10-bytes of
contiguous storage. Therefore, we must examine RAM to see where we can assign
each of the nodes on the list:

Locations Bytes Available Assignments

5000 – 5015 16 Node ’30’ Base address: 5000
5080 - 5084 5 NONE
5179 - 5212 33 Node ‘67’ Base address: 5179

Node ‘12’ Base address: 5189
Node ‘7’ Base address: 5199

5287 – 5339 53 Node ‘45’ Base address: 5287
Node ‘38’ Base address: 5297
Node ‘22’ Base address: 5307
Node ‘9’ Base address: 5317
Node ‘34’ Base address: 5327

5362 – 5484 123 Node ‘33’ Base address: 5362
Node ‘32’ Base address: 5372

The Addresses assigned to each of the pointers are:

4. Given the list: Juan, Anita, Tamara, Olaf, Radhika, Chang, Lambros, Colleen,

Marje, Zeke, James

5372

5362 5327

 5297

5000

5179

5287

5189

5307 5199

5317

30

67 12

7 45

38

22

9

34

33

32

NULL

NULL

NULL
NULL

NULL

NULL
NULL

NULL

NULL

NULL

NULL

NULL

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

331 Chapter 12: Binary Trees (and Recursion)

The list can be stored optimally if we would store the list as if we were performing a
binary search on it. Therefore, If we first sort it, we could see the path we would take to
find any element on the list.

 Anita, Chang, Colleen, James, Juan, Lambros, Marje, Olaf, Radhika, Tamara, Zeke, James

4. A Recursive function is one which calls itself.

Lambros

Colleen Radhika

Anita James Marje Tamara

Chang Juan Olaf Zeke

Abstract Data Structures for Business In C/C++ Kirs and Pflughoeft

Chapter 12: Binary Trees (and Recursion) 332

C/C++ Programming Assignments

1. Assume the following template:

struct telephonetemplate
{ char name[30], tel[11];
 struct telephonetemplate *leftname, *rightname };

 Duplicate the code given in 12.3., arranging the binary by name.

2. Add a function to the above program which will allow you to search for any name on
the list (make sure that you put in a check to see if the name is NOT on the list).

3. Add a function to the above program which will allow you to print out all the names in
the tree IN ORDER.

4. Add a function to the above program which will allow you to print out all the names in
the tree IN REVERSE ORDER.

5. Redo exercise 1 above, BUT instead of adding larger names to the right of the root, and
smaller names to the left, add the LARGER names to the LEFT, and the SMALLER
names to the RIGHT.

6. Using the same template given above, assume that we also have the additional template
and declaration:

struct myfriends
{ char friendname[30], friendtel[11]; };

 int main()
 { struct myfriends buddies[14] =
 {{“Gable, Clark”, “2025551212”},{“Garbo, Greta”, “3056789012”},

{“Loy, Myrna”, “1230987654”}, {“Leigh, Vivian”, “2348765432”},
{“Astaire, Fred”, “3457654321”}, {“Dandridge, Dorothy”, “4566543210”},
{“Romero, Ceasar”, “5675432109”, {“Crosby, Bing”, “6784321098”},
{“Harlow, Jean”, “7893210987”}, {“Taylor, Rod”, “891210987”},
{“Cooper, Gary”, “9010987654”}, {“Waters, Ethel”, “7169876543”},
{“Miranda, Carmen”, “8595928374”}, {“ Hope, Bob”, “4657382910”}};

Transfer the names from the array buddies to the binary tree. Make sure the tree is
OPTIMALLY BALANCED.

