
Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 275

CHAPTER 11:

DYNAMIC MEMORY ALLOCATION

“Simplicity of life, even the barest, is not a misery,
but the very foundation of refinement”

William Morris (1834–96)

Introduction

ll of the abstract data types we have seen so far have been bridled by a major
constraint: we needed a fixed number of contiguous blocks of RAM. We have been

requesting RAM on a static basis. In other words, once we request a specified amount of
storage, that space is reserved even before we actually save any data to it, and it can not be
used by any other part of the program1. What we need to be able to do now
is to request additional RAM on a dynamic basis, or on-the-run, as we
require it.

Allocating memory dynamically generally requires the data structures and techniques we
have been discussing to date. Without the use of structured data objects and pointers, we
would not be able to allocate memory dynamically. The idea of linked lists, and how to use
linked lists to reduce search times contributes to efficiency of dynamic memory allocation.
Used in conjunction, these structures and approaches allow us flexibility far beyond that
possible with many of the older 3rd generation languages, such as COBOL and FORTRAN.

1 Note that this is not meant to contradict our previous discussion of Static vs. External vs. Automatic variables. Any

variable declared within a function, assuming it is automatic, for example, is still available only to that function (i.e.,
the variable name can only be used by that function). External variables can still be referred to from any function.

A

 ��								

��������������������������������								

C
H

 1

 How do nos. & chars differ?
 How do we convert into
binary?

 What are Octal and Hex?
Why?

����������������������������What is an Integer on the PC?
 What if I need large integers?
������������������������What is One’s Complement?

What is Two’s Complement ?

How are real numbers stored?
How are real nos. described?
What if I need large nos?
Data types are there in C?
Are there other data types?
What questions should I know?

C
H

 2

Def

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 276

Dynamically Allocated Linked Lists

ne of the main functions of the operating system is to keep track of available RAM.
We have put an additional constraint on the operating system in that when we declare

a data type (whether a basic data type, or a struct we have constructed), we are requesting
that a contiguous number of bytes be reserved for each of the data types. That is, if we need
to store an integer, we need 2-bytes of contiguous storage; to store a float, we require 4-
bytes of contiguous storage; if we want to store a struct, we must specify, in advance
(through our template), the total number of contiguous bytes we need.

These basic constraints (e.g., 2-bytes for the data type int, 4-bytes for a pointer) can not be
eliminated or eased since basic data (whether defined by the c programming language or by
us) can not be broken down.

We can, however, modify the manner in which we store arrays (the basic data structure we
have been dealing with up to this point). Arrays are wonderful data structures because we
can do so much with them (i.e., determine an element address quickly, sort them, perform
very quick searches on them, link them, and so forth). Up to this point in time, we have
relied on them to store data, and have considered techniques which utilize their basic
structure. But we know that there is a basic problem with them: we must reserve all of the
contiguous memory we need in advance.

Suppose that we wished to set-up a database which contained 1000 simple records, say, of
the structure :

Notice that the structure requires only 41-bytes of contiguous storage; if we were to
associate this structure with an array (e.g., using the declaration struct custrecrec
customer[1000]) we would require a total of 1000 * 41 = 41,000 bytes (about 40 KB) of
contiguous storage. It is possible that we might get the runtime message:

Not enough memory (or something similar).

However, if we were to check the amount of RAM available (we won’t get into how to do
that here), we might find that we actually have about 288,000 bytes (about 281 KB) of
RAM available.

While we might have enough RAM to store our database, we do not have enough
contiguous bytes of RAM. If we could look inside our RAM, we might see:

O

 struct custrec
 { char ssn[10];
 char name[31]; }

 C/C++ Code 11.1

????���� Why do we get the error message then?

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 277

 Figure 11.1.

We do indeed have a total of 36 + 28 + 22 + 31 + 29 + 12 + 18 + 35 + 26 + 14 + 30 =
281KB of RAM available, BUT the largest contiguous block of memory available is only
36KB, insufficient for our array. We could, theoretically have 2 arrays (perhaps customer1
and customer2), each containing 500 records. In this case, the largest contiguous block
needed would be 41 * 500 = 20,500 bytes (about 20KB). However, if we split up our array
we give up many of the advantages associated with arrays (e.g., a single variable name,
sorting and search advantages).

We need to find a way to store the records in a non-contiguous fashion AND still be able to
access them in an orderly fashion. Our discussion of linked lists gave us some ideas on
how we could do this: Through the use of pointers.

In the previous chapter, when we linked our lists in some ordered fashion (e.g.,
alphabetically, by name), we used pointers which did not necessarily point to some
adjacent record. Depending on the number of records in our array, the number of bytes
required for each record, and the manner in which we established the list, we might have
one record pointing to a record which was thousands of bytes from it.

Let’s rewrite the record structure to include a pointer field:

Nothing new here. As we did previously, we will use the pointer field to store the address
of the next record. Each record will require 45 bytes of contiguous storage. The main
difference is in our declaration:

 454KB: Assigned 36 KB Available

43 KB: Assigned 28 KB Avail 78 KB: Assigned 22 KB: Avail.
234 KB: Assigned 29 KB: Available

512 KB: Assigned

35 KB: Avail. 386 KB: Assigned

31 KB: Avail.

12 KB: Avail. 18 KB: Avail.

26 KB: Avail.
127 KB: Assigned 14 KB:

Avail.
23 KB: Assigned 30 KB: Avail.

32 KB: Assigned

76 KB: Assigned

struct custrec

{ char ssn[10], name[31];
 struct custrec * next; };

C/C++ Code 11.2.

int main()
{ struct custrec * customer, * first, * previous;

C/C++ Code 11.3.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 278

Notice that we are NOT associating the data type struct custrec with an array, but with
three pointer variables. As could be anticipated, pointer first will hold the address of the
first record on the linked list, and pointer customer will hold the address of the current
record (the one we are examining). Pointer variable previous will hold the address of the
last record we were examining (this will make more sense when we actually go through the
procedure of setting up the linked list).

To set up the linked list, we will:

1. Ask the operating system to find us 45 bytes of contiguous storage and return the
base address, which we will store in location customer.

2. Store the data into the fields (ssn & name) we established for our data type struct
custrec.

3. If this is the first record on the list, we will also store the address returned by the
operating system in location first (first = customer).

4. If this is not the first record on the list, have the previous record’s next field point
to the address of the current record (previous -> next = customer).

5. If there are no more records to add to the list (i.e., the current record is the last
record), set the current record’s next field to NULL (customer -> next = NULL).
Stop, we are done.

6. If there are more records to add to the list, then before getting the next one, store
the address of the current record into location previous (previous = customer). Go
to step 1.

It might look confusing, but it should make more sense when we go through the procedure
step-by-step.

Establishing Dynamically Allocated Linked Lists

et’s assume that we wished to store
information about the customers given in Table

11.1. Notice that the list is not sorted in any order
(either by ssn or name). Right now, we will not
concern ourselves with ordering the list by any
field. Let’s just set up the list so that “Grieg” will
be the first record and will point to “Shumann”,
and so forth, until “Vivaldi” point to “Liszt”, who
point to no one (NULL).

Now, let’s follow the procedure we outlined previously:

 Table 11.1.

ssn name
551928772 Grieg, Eduard
732010233 Shumann, Robert
321100678 Beethoven, Ludwig
697467721 Vivaldi, Antonio
678946790 Liszt, Franz

L

Establishing a Dynamically Linked List

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 279

1. Ask the operating system to find us 45 bytes of contiguous storage and return the
base address, which we will store in location customer.

Right now, let’s not worry about the commands necessary to do this (we will see those
soon). Let’s just assume that we have done so, and the operating system returns the address
15873 (meaning addresses 15873 through 15917 are available; remember we need 45
contiguous bytes for our structure). This address will be stored in pointer variable
customer.

2. Store the data into the fields (ssn & name) we established for our data type struct

custrec

After we set in our first record, we would see the following We would now see the
following layout:

 Figure 11.2.

customer 15873 - 15882 15883 - 15913 15914 - 15917
15873 551928772 Grieg, Eduard -----

3. If this is the first record on the list, we will also store the address
returned by the operating system in location first (first = customer).

We can skip steps 4 and 5 right now, since they don’t apply.

6. If there are more records to add to the list, then before getting the

next one, store the address of the current record into location pre-
vious (previous = customer). Go to step 1.

Variable previous now contains the address 15873.

1. Ask the operating system to find us 45 bytes of contiguous storage and return the
base address, which we will store in location customer.

Assume that the address 16452 is returned.

2. Store the data into the fields (ssn & name) we established for our data type struct

custrec

Our layout would now appear as (Figure 11.3):

first
15873

previous
15873

customer
16452

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 280

 Figure 11.3.

first 15873 - 15882 15883 - 15913 15914 - 15917 previous
15873 551928772 Grieg, Eduard ----- 15873

customer 16452 - 16461 16462 - 16492 16493 - 16496

16452 732010233 Shumann, Robert -----

Since this is not the first record, we can skip step 3.

4. If this is not the first record on the list, have the previous record’s
next field point to the address of the current record (previous ->
next = customer).

Skipping step 5, since there are more records to be added:

6. If there are more records to add to the list, then before getting the

next one, store the address of the current record into location pre-
vious (previous = customer). Go to step 1.

Variable previous now contains the address 16452.

Let’s take a look at how RAM layout changes after each variable is added, without going
through the individual steps.

After Record #3 is Added: Figure 11.4.

first 15873 - 15882 15883 - 15913 15914 - 15917
15873 551928772 Grieg, Eduard 16452

Previous 16452 - 16461 16462 - 16492 16493 - 16496
16452 732010233 Shumann, Robert 16497

Customer 16497 - 16506 16507 - 16537 16538 - 16541
16497 321100678 Beethoven, Ludwig -----

Notice that if contiguous memory is available, it will be used.

15914 – 15917

16452

previous
16452

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 281

After Record #4 is Added: Figure 11.5.

first 15873 - 15882 15883 - 15913 15914 - 15917
15873 551928772 Grieg, Eduard 16452

 16452 - 16461 16462 - 16492 16493 - 16496
 732010233 Shumann, Robert 16497

previous 16497 - 16506 16507 - 16537 16538 - 16541
16497 321100678 Beethoven, Ludwig 17246

customer 17246 - 17255 17256 - 17286 17287 - 17290
17246 697467721 Vivaldi, Antonio -----

Notice that in this case, addresses 16542 (through 16586, which we would for 1 record)
were not available. The next block of 45 contiguous bytes of RAM was available starting at
17246 (and running through 17290).

After Record #5 (the final record) is Added: Figure 11.6.

first 15873 - 15882 15883 - 15913 15914 - 15917
15873 551928772 Grieg, Eduard 16452

 16452 - 16461 16462 - 16492 16493 - 16496
 732010233 Shumann, Robert 16497
 16497 - 16506 16507 - 16537 16538 - 16541
 321100678 Beethoven, Ludwig 17246

previous 17246 - 17255 17256 - 17286 17287 - 17290
17246 697467721 Vivaldi, Antonio 17288

customer 17288 - 17297 17298 - 17328 17329 - 17332
17288 678946790 Liszt, Franz NULL

Let’s assume that the next block of 45 contiguous bytes of RAM was available starting at
17288 (and running through 17332). The only difference between how we added this
record and how the others were added is that we stored a NULL address in the next field,
meaning that the list is now complete.

 ????���� How do allocate memory dynamically in C ???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 282

Dynamic Memory Allocation in C

he c programming language uses a very simple command to request memory (on-the-
run, if you will). Assuming we have already established our structure (as we did in C

Code 11.2.), and that we have already made our variable declarations (as we did in C Code
11.3.), then to store the base address of our block of available memory (into pointer
variable customer), we would issue the command:

It looks complicated, but it really isn’t. Let’s look at the individual components in the
command, starting with the innermost parentheses.

sizeof (struct custrec)

sizeof is a built-in (unary) operator which returns the number of bytes necessary for a
certain data type. For example, let’s assume that we had declared a variable called intvar of
type int, floatvar of type float, and a variable called doublevar of type double. The
command sizeof(intvar) would return the value 2, the command sizeof(floatvar) would
return the value 4, and the command sizeof(doublevar) would return the value 8. These
may seem obvious (since we know that integers require 2-bytes of storage, single precision
real numbers require 4-bytes, and double precision real numbers require 8-bytes), but when
it comes to data types that we develop, the number of bytes needed for storage varies. For
structured data objects with many fields, we really don’t want to calculate the number of
bytes needed each time we ask for memory.

malloc

malloc (short for memory allocation) is a function which is
found in the header file <stdlib.h>, and performs one action:
checks with the operating to find available memory. It takes one
argument, the number of contiguous bytes needed, and returns
the address of where that memory can be found. In short, it is the

nucleus of our memory allocation activity. The sizeof operator that we discussed above
determines the number of bytes we need, and passes the return value as a parameter to
function malloc.

Yes, but as we already noted, we generally do not want to add up the number of bytes a
structured data object requires. Letting the program determine the number of bytes needed
also saves us time when we begin editing our code. Suppose we decide that we wish to add

T

���������	�
��
���������	�
��
���������	�
��
���������	�
��
��

<stdlib.h> also contains
the functions atoi, atof,
atol, itoa, ftoa, and ltoa

customer = (struct custrec *) malloc (sizeof (struct custrec));

C/C++Code 11.4.

????���� Since we know that our struct custrec requires 45 bytes of contiguous storage,
could we have passed the integer value 45 to function malloc??

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 283

new fields (or delete existing ones), or change the way we store fields (from storing a field
as an int to a float, for example). Using the sizeof operator let’s us do so without also
having to change the number of bytes we need for a data structure.

(struct custrec *)

This component does look a little strange, but mainly because of our use of parentheses.
Suppose we saw the declaration int * i; By now, we should be quite used to this notation.
We are asking for 4-bytes of storage at location i, where we will store an address at which
we can find an integer. In C Code 11.3., when we used the expression struct custrec *
customer; we were requesting 4 of contiguous memory at location customer, where we will
store an address pointing to the data type struct custrec. The only difference here is that
we will get an address at which we expect to find the data type struct custrec from
function malloc (and store it at location customer) as we need it (not before we begin
program execution).

It is possible, although not likely since we are only requesting 45-bytes for our data type. If
there is not enough RAM available, function malloc will return a NULL pointer. We
should always check to make sure that we do have a valid address for our data. This is
relatively simple to do:

or, combining the commands:

In either case, the program terminates (we are assuming int main()) since if we can’t get
the memory we need, we might as well terminate processing.

Not necessarily. We might have other programs (such as a word processor or spreadsheet)
which we are not using at the present time, but are still taking up space in RAM. We could

customer = (struct custrec *) malloc (sizeof (struct custrec));
if (customer == NULL)
{ puts("Memory allocation failed - Bye!");
 return(0); } }

C Code 11.5.

if ((customer = (struct custrec *) malloc (sizeof (struct custrec))) == NULL)
{ puts("Memory allocation failed - Bye!");
 return(0); } }

C Code 11.6.

????���� Does that mean that we could never run the program??

????���� What if there is not enough contiguous memory available??

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 284

remove those. Or, we could release some the RAM we have reserved for our present
program, but no longer need.

There is another function in the <stdlib.h> file called free which allows us to dispose of
memory allocations as we need it. Suppose, for example, that variable customer contained
the address of a record which we no longer needed. We could free-up the memory which
that record is presently taking up (and make the 45-contiguous bytes that are presently
reserved for it available for future usage) with the simple command:

There are additional memory management functions available to us, but they go beyond
what we need to know in this chapter.

Establishing Dynamically Linked Lists in C

e are going to illustrate this program (C Code 11.8.) in a strange manner: We are
going to first store the elements as an array of structured data objects, and then move

them over to a (different) dynamically linked list.

Merely for the purposes of illustration. Normally, these records would be read from a data
file (either ASCII or binary), or entered from the keyboard (we are certainly not using the
advantages of dynamic memory allocation here). Rather than worry about the additional
code necessary, we will just transfer them from one list to the other.

The code follows the procedure as given in Figures 11.2. through 11.6. We have also
included some printf statements, so we can see how the addresses come into play. The
actual output (for the run made; note that the addresses will vary each time the program is
run) from the program is given in Program Output 11.1. Because we are concerned with
the addresses, they are printed in boldface.

Looking at the output, it can be noted that the array element addresses (from the command
printf("Record #%d is located at %lu\n",i, &custs[i]);) are as we might expect. Given a
base address (&custs[0] == custs) for the array of 498863890, the next record (&custs[1])
would be found at 498863890 + 45 = 498863935), and so forth, through the last record
(&custs[4] = 498863890 + 4 * 45 = 498863890 + 180 = 498864070).

W

free(customer);

C/C++ Code 11.7.

????���� What about the C code necessary to dynamically set up our list??

????���� Why??

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 285

Looking at the addresses for the linked list, however, we notice that the addresses are not at
all predictable. Our first record (for “Grieg, Eduard”) is stored at 520028164 (21164050
addresses from the end of the last record in our array). The second address (for “Shumann,
Robert”) starts at address 520290308 (262100 addresses from the end of the first record (at
address 520028208). When we examine each of the linked list address, relative to the
previous record’s address, we see that none of the records are contiguous.

#include #include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct custrec
{ char ssn[10], name[31];
 struct custrec * next; }
int main()
{ struct custrec custs[5] = {{"551928772","Grieg, Eduard",}, {“732010233”,
 “Shumann, Robert”,}, {“321100678”,”Beethoven, Ludwig”,},{“697467721”,
 “Vivaldi, Antonio”,}, {“678946790”,”Liszt, Franz”,}};
 struct custrec * customer, * first, * previous;
 int i;
 for (i = 0; i < 5; i++) // print array information and transfer the records
 { printf("Record #%d is located at %lu\n",i, &custs[i]);
/* Get some memory if we can and store the address to it in variable customer */
 if ((customer = (struct custrec *) malloc (sizeof(struct custrec))) == NULL)
 { puts("Memory Allocation Failed – Bye!\n");
 return 0; }
 strcpy(customer -> ssn, custs[i].ssn); // move over customer ssn
 strcpy(customer -> name, custs[i].name); // move over customer name
 if (i == 0) // store the first dynamically
 first = customer; // allocated address
 else
 previous -> next = present; // old record points to the new one
 previous = customer; } //get ready for a new address
 customer -> next = NULL; // the last record will point to NULL
 customer = first; // Start at the the top of the list
 while (customer != NULL)
 { printf ("SSN: %12s Name: %15s is stored at at %lu and the next rec is at %lu\n",
 customer->ssn, customer->name, customer, customer->next);
 customer = customer -> next; } // Get the next record in the list
 }
 return 0; // We’re done
}

C/C++ Code 11.8.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 286

If we were to examine the way in which this data was stored in RAM, we would see (In
order to save space, only the base address of each field is shown):

 Figure 11.7.

498863890 4988638900 498863931 498863935 498863945 498863976
551928772 Grieg, Eduard ---- 732010233 Shumann, Robert ----
498863980 498863990 498864021 498864025 498864035 498864066

321100678 Beethoven, Ludwig ---- 697467721 Vivaldi, Antonio ----
498864070 498864070 498864101

678946790 Liszt, Franz ----

 •••• •••• •••• •••• •••• •••• •••• ••••
520028164 520028174 520028205

551928772 Grieg, Eduard 520290308

520290308 520290318 520290349

732010233 Shumann, Robert 520552452

520552452 520552462 520552493

321100678 Beethoven, Ludwig 520814596

520814596 520814606 520814637

697467721 Vivaldi, Antonio 521076740

521076740 521076750 521076781

678946790 Liszt, Franz NULL

Record #0 is located at 498863890
Record #1 is located at 498863935
Record #2 is located at 498863980
Record #3 is located at 498864025
Record #4 is located at 498864070
SSN: 551928772 Name Grieg, Eduard at 520028164 next at 520290308
SSN: 732010233 Name: Shumann, Robert at 520290308 next at 520552452
SSN: 321100678 Name: Beethoven, Ludwig at 520552452 next at 520814596
SSN: 697467721 Name: Vivaldi, Antonio at 520814596 next at 521076740
SSN: 678946790 Name: Liszt, Franz at 521076740 next at 0

Program Output 11.1.

????���� But the linked list is not in any order. How can it be ordered??

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 287

Ordering a Dynamically Linked List

e have already seen how to order a linked list (in Chapter 10). The rules have not
changed. By way of review, let’s order our dynamically linked list by social security

number (field ssn). As we did before, we will get the first record and put it onto our list.
Every time we get a new record, we will determine where it should be on the list, and insert
accordingly(let’s assume the same addresses for each record as above). The procedure to
be followed would appear as follows:

Add the First Name Figure
11.8.

First Address ssn name next
520028164 520028164 551928772 Grieg, Eduard NULL

The first Name we get will become the only name on our list. Therefore, we will also set
our first pointer to the base address of the record, and have it point to NULL, since there
are no more records on the list (so far).

Next, as before, we dynamically allocate space for our next record, saving the address into
variable customer, and move in the data we wish to store there. We then start comparing
the ssn of our new (i.e., at location customer) record (“732010233”) with the ssn of every
record on the list, starting with the first ssn on the list. To do this, we will need one
additional pointer variable (let’s call it present). We will start by copying the address
stored in variable first into location present. We then compare the information stored at the
address contained in variable customer with the information stored at the address contained
in variable present. There are two possibilities and two possible actions for each:

W

1. The new record (pointed to by customer) is smaller than the old record (pointed to by
present)

a. If the old record is the first record in the list (i.e., it has the same address as that
contained in variable first), have the new record point to it and move the new
record’s address into variable first.

b. If the old record is NOT the first record on the list, have the record which was
previously pointing to the old record (i.e., the record whose base address we have
been tracking in variable previous) point to the new record (move the contents of
location customer into the next field of the record whose base address is stored in
variable previous). Then have the next field of the new record point to the old
record.

2. The new record is greater than the old record.
a. If the old record is the last record on the list, have the old record point to the new

record, and have the new record point to NULL.
b. If the old record point to another record, have the new record point to that record.

Have the old record then point to the new record.

Record Insertion Possibilities

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 288

In our case, we will (quickly) come to the end of the list, and have “Grieg, Eduard” point to
“Shumann, Robert”, who will point to NULL.

Add the 2nd Name Figure 11.9.

first Address ssn name next
520028164 520028164 551928772 Grieg, Eduard 520290308

present
520028164

customer Address ssn name next
520290308 520290308 732010233 Shumann, Robert NULL

Since we are becoming familiar with the procedure, we have included the value of (one) of
the other pointers we must use. As we noted above, there is another pointer (previous), but
right now we don’t need it, since the ordered list contained only one record above.

When we (dynamically) get our next record (“Beethoven, Ludwig”), storing the address we
received in customer. We again start at the top of the list by moving the address from
variable first into variable present. At the address contained at location present, we find
that the associated ssn (“321100678”) is the smallest one in our linked list. We will
therefore have “Beethoven, Ludwig” point to “Grieg, Eduard” AND reset our first pointer so
that it points to “Beethoven, Ludwig”.

Add the 3rd Name Figure 11.10.

first Address ssn name next
520552452 520028164 551928772 Grieg, Eduard 520290308

present
520028164

 Address ssn name next
 520290308 732010233 Shumann, Robert NULL

customer Address ssn name next
520552452 520552452 321100678 Beethoven, Ludwig 520028164

Repeating the process for the 4th record (“Vivaldi, Antonio”) we first get 45-bytes of RAM,
store the relevant data at that location, and move the address for “Beethoven, Ludwig”
(now the first record on our list) into variable present (present = first). Comparing
Vivaldi’s ssn with Beethoven’s, we find that it is greater. Since Beethoven is not the last
record on the list, we need to keep track of Beethoven’s address (since we might have to
insert Vivaldi between Beethoven and whomever he points to) by copying it to variable
previous (previous = present). We then get the next record on the list (present = present ->
next), or “Grieg, Eduard”. Comparing Vivaldi’s ssn (“697467721”) with Grieg’s
(“551928772”), we find that it is still greater, so we repeat the process above (previous will
hold Grieg;s address, present will hold the next record’s address, or the address for
“Shumann, Robert”).

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 289

This time, when we comparing Vivaldi’s ssn with Shumann’s ssn, we find that Shumann’s
(“732010233”) is greater. Therefore, we must insert Vivaldi between Grieg and Shumann.
This is not a problem, since we already have Shumann’s address (in variable present), and
Grieg’s address (in variable previous).

Add the 4th Name Figure 11.11.

previous Address ssn name next
520028164 520028164 551928772 Grieg, Eduard 520814596

present Address ssn name next
520290308 520290308 732010233 Shumann, Robert NULL

first Address ssn name next
520552452 520552452 321100678 Beethoven, Ludwig 520028164

customer Address ssn name next
520814596 520814596 697467721 Vivaldi, Antonio 520290308

There is only one more name (Liszt) to add (to be inserted between Vivaldi and Shumann).
To do this, all we need is to have Vivaldi point to Liszt, and Liszt point to Shumann. The
list would appear as:

Add the 5th Name Figure 11.12.

 Address ssn name next
 520028164 551928772 Grieg, Eduard 521076740

present Address ssn name next
520290308 520290308 732010233 Shumann, Robert NULL

first Address ssn name next
520552452 520552452 321100678 Beethoven, Ludwig 520028164

present Address Ssn name next
520814596 520814596 697467721 Vivaldi, Antonio 520290308

customer Address Ssn name next
521076740 521076740 678946790 Liszt, Franz 520814596

And we are done.

 ????���� What about the C Code necessary for the above procedure?

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 290

Establishing Dynamically Ordered Linked Lists in C

he code corresponds to that which we saw when we ordered our array of records in C
Code 10.4. Based on the code we saw in C Code 11.8., The relevant section of code is:

T
int main()
{ struct arraytemp studentarray[5] = {{. . .}};
 struct arraytemp * first, * customer, * present, * previous;
 int i;
 for (i = 0; i < 5; i++)
 if ((customer = (struct custrec *) malloc (sizeof(struct custrec))) == NULL)
 { puts("Memory Allocation Failed – Bye!\n");
 return 0; }
 strcpy(customer -> ssn, custs[i].ssn); // move over customer ssn
 strcpy(customer -> name, custs[i].name); // move over customer name
 customer -> next = NULL; // This is slightly different
 if (i == 0) // store the first dynamically
 first = customer; // allocated address
 else
 { present = first; // Start with the first record
 while ((present != NULL) && (strcmp(customer->ssn, present->ssn) > 0))
 { previous = present; // Store the last address
 present = present -> next; } // Get the next record’s address
/* Why are we out of the loop?? Should the new record go before the old one?? */
 if (strcmp(customer -> ssn, present -> ssn) < 0)
 { if (present == first) // Was the old record the first one?
 first = customer; // If so, the new record is now the first
 else // Otherwise, insert the new record
 previous -> next = customer; // between the two records
 customer -> next = present; } // Have the new record point to the old
/* No, the new record should go after the old record */
 else
 { if (present -> next != NULL) // If the old record wasn’t the last one
 customer -> next = present -> next; // Point to the one after the old record
 present -> next = customer; } // The old points to the new one
 } } // The list is ordered
 customer = first; // Start at the the top of the list
 while (customer != NULL) // Print out the whole list
 { printf ("SSN: %12s Name: %15s is stored at at %lu and the next rec is at %lu\n",
 customer->ssn, customer->name, customer, customer->next);
 customer = customer -> next; } // Get the next record in the list
 return 0; // We’re done
}

C/C++ Code 11.9.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 291

Maintaining Dynamically Linked Lists

o add a record, we follow the exact same procedure are we used when we created the
list: We simply get the needed space (using malloc), determine where the new record

should go, and adjust the pointers accordingly. Deleting records is equally as simple,
although there is one additional step: We find the record to delete, and adjust the pointers.
There are only three possibilities:

There is one additional advantage that we have with dynamically ordered linked lists: We
can free up the memory we were using when we delete a record.

Remember the command we illustrated in C Code 11.7. Once we have the address of the
record we wish to delete (for example, in pointer variable customer), we can release it by
issuing the command free(customer);. Unlike our array of linked records, this command
frees up the memory used (in our case, 45 contiguous bytes of RAM) which we can later
use, if we wish.

Dynamically Linked Lists With Multiple Linkages

nything that we can do with the static linked lists, we can do with dynamically linked
lists (and more, as we saw above). For example, if we wished to doubly link our list of

customers on their ssn field AND link them alphabetically by name, our list might appear
as (Figure 11.13):

T

A

????���� What if I want to set up a doubly linked list? Or order the list on multiple fields?

????���� How do I add, or delete, records from the list???

1. If the record we are deleting is the first record on the list, have the first pointer point to
the second record on the (ordered) list.

2. If the record we are deleting is the last record, have the record which points to that
record point to NULL.

3. If the record we are deleting is between two records, have the record which points to it
point to the record which the record we are deleting is pointing to.

Record Deletion Possibilities

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 292

 Figure 11.13.
first Address ssn name nextid previd nextname

520552452 520028164 551928772 Grieg, Eduard 521076740 52055245 521076740
last 520290308 732010233 Shumann, Robert NULL 52081459 520814596

520290308 520552452 321100678 Beethoven, Ludwig 520028164 NULL 520028164
fname 520814596 697467721 Vivaldi, Antonio 520290308 52107674 NULL

520552452 521076740 678946790 Liszt, Franz 520814596 52002816 520290308

Notice that each record now requires 8 additional bytes of storage (4 each per additional
pointer) for a total of 53 bytes per record. Also, if we wish to link the records in this
fashion, we need two additional pointer variables, one to point to the last ssn (last), and one
to point to the first name (fname).

Dynamically Linked Lists With Multiple Linkages

o, there are no searching advantages for dynamically linked lists over the way we
searched for records in our array of linked records, at least given the way in which we

set up our lists (wait until the next chapter). In fact, since we can not physically sort the
lists (as we did with our array), we can not perform a binary search. Generally speaking,
we locate records in the linked list using a sequential search. Unless, of course, we wish to
apply one the same options as before:

As with other linked lists, the trade-off is reduced searching time vs. increased storage,
complexity of programming, and increased maintenance. It all depends on how important it
is to be able to find a record quickly.

N

????���� Do Dynamically linked lists offer searching advantages over other linked
lists???

1. We can set up doubly linked lists to search from either direction
2. We can set up a sorted array of pointers, and perform a binary search
3. We can set up leveled lists

Improving Searches on Dynamically Linked Lists

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 293

Summary

n this chapter, we removed our final constraint, namely that we need to reserve a fixed
number of contiguous blocks of RAM prior to running our program. In fact, we have

eliminated all of our previously adhered to constraints since we introduced arrays. Along
the way, we developed procedures and techniques for dealing with these new data types,
such as linking them, refining search methods, and conserving the RAM that we require.

Our basic task for the remainder of this text is to develop approaches for dealing with our
other problem: locating records as quickly as possible without the effort required to sort
and maintain our data for physically ordered lists.

In the next chapter, we introduce a new data type which helps resolve this dilemma: binary
trees. Binary trees rely on the use of structured data objects, pointers, dynamic memory
allocation, and linkages, so they are not necessarily new. However, the manner in which
we conceive of, and manipulate, them is new. Further, as we already know, while they
offer advantages, nothing is without its trade-offs.

Chapter Terminology: Be able to fully describe these terms

Dynamic Memory Allocation NULL pointer
Function free sizeof operator
Function malloc Static Declarations

Review Questions

1. What are the Advantages of Dynamic Allocation? What are the Disadvantages?

2. How do we know if we don’t have the contiguous memory we need for our data type?

3. Assume that we could see the following section of RAM:

I

65984 - 66112

Available

66113 - 66368

Unavailable

66368 - 66656

Available
66657 - 66769

Unavailable

66770 - 66912

Available

66913 - 67177

Unavailable

67178 - 67296

Available
67297 - 67600

Unavailable

67601 - 68286

Available
68287 - 68455

Unavailable

68456 - 68629

Available

68630 - 68749

Unavailable

68750 - 68774

Available

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 294

 Now assume the following has been declared:

 struct mytemplate
 { unsigned int id;
 char name[36], address[46], city[25], state[3], zip[6];
 char creditrating;
 float creditlimit, balance;
 struct mytemplate * nextid, * nextname; };

Assume further that RAM is allocated from lowest address to highest (i.e., the lowest
address available will be allocated first). I dynamically allocated 4 records of data type
struct mytemplate using the command:

customer = (struct mytemplate *) malloc (sizeof(struct custrec));

 where customer was declared as: struct mytemplate * customer;

a. What will the base addresses of each of the records be?
b. If customer presently holds the address of the 3rd record allocated, and when linked

by ssn, the 3rd record points to the 2nd record which points to the 4th, what is
outcome of the commands:

 printf(“%lu\n”, customer -> nextid);
 printf(“%lu\n”, &(customer -> balance));
 printf(“%lu\n”, &(customer -> next -> next -> city));

Review Question Answers (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

1. What are the Advantages of Dynamic Allocation? What are the Disadvantages?

 Advantages Disdvantages
No Need to reserve memory in advance None, other than those associated
Freeing of memory not being used with linked lists in general
All of the advantages associated with (see Question 1, Chapter
10).
 linked lists (see Question 1, Chapter 10).

2. How do we know if we don’t have the contiguous memory we need for our data

type?

 When function malloc returns a NULL address

3. The structured data object struct mytemplate requires:

 2 + 36 + 46 + 25 + 3 + 6 + 1 + 4 + 4 + 4 + 4 = 135 contiguous bytes of RAM

 Looking at the available space in RAM, we find:

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Chapter 11: Dynamic Memory Allocation 295

 Addresses Contiguous Bytes Record Allocation(?)
65984 - 66112 129 NO
66368 - 66656 289 1st record at 66368 (Through 66502)
 2nd record at 66503 (Through 66637)
66770 - 66912 143 3rd record at 66770 (Through 66904)
67178 - 67296 119 NO
67601 - 68286 686 4th record at 67601 (Through 67735)

If customer presently holds the address of the 3rd record allocated, and when linked by
ssn, the 3rd record points to the 2nd record which points to the 4th, then:

printf(“%lu\n”, customer -> nextid); will produce the output: 66503

printf(“%lu\n”, &(customer -> balance)); will produce the output:

66770 (the base address of the 3rd record) + 2 + 36 + 46 + 25 + 3 + 6 + 1 + 4 = 66893

printf(“%lu\n”, &(customer -> next -> next -> city));

Since customer points to the 3rd record, which points to the 2nd, which points to the 4th :

customer -> next -> next implies the 4th record

Given that the base address of the 4th record is 67601, then field city will be found at:

67601 + 2 + 36 + 46 = 67685

