
Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.1

CHAPTER 10:

LINKED LISTS

“Simplicity of life, even the barest, is not a misery,
but the very foundation of refinement”

William Morris (1834–96)

Introduction

n our chapter on searching and sorting, we considered some of the trade-offs between the
two techniques. These considerations take on greater significance when we consider how

they affect databases: We frequently wish to view the records in different orders. For
example, consider our student database (from Chapter 7, which we have duplicated as table
10.1.). Sometimes, we might wish to list students by SSN or name or class or gpa or hrs or
balance or by state then city then zip. Essentially, we might wish a listing by any field, or
combination of fields.

We know that this could take a considerable amount of time, especially if it is a large
database.

I

 ��								

��������������������������������								

C
H

 1

 How do nos. & chars differ?
 How do we convert into
binary?

 What are Octal and Hex?
Why?

����������������������������What is an Integer on the
PC?

 What if I need large
integers?

������������������������What is One’s Complement?

What is Two’s Complement ?

How are real numbers stored?
How are real nos. described?
What if I need large nos?
Data types are there in C?
Are there other data types?
What questions should I know?

C
H

 2

?���� What are we to do??? Sort the database each time we wish a new listing???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.2

Table 10.1.

Field SSN name street city state zip class gpa hrs balance

Datatype char[10] char[31] char[41] char[26] char[3] char[6] char float int float

Bytes 10 31 41 26 3 6 1 4 2 4

One of the main advantages of linked lists is that we order, and quickly display, the
contents of a list in various order without having to physically sort the list. As we will see,
there are trade-offs involved, but then again, isn’t everything a trade-off?

Another problem encountered with arrays, and especially with records, is that we don’t
always know exactly how much storage we will require in advance. Compounding that is
the fact that we can’t always get contiguous bytes of storage, even though we might have
enough total storage available to us. Dynamic memory allocation (which we will discuss in
the next chapter) will allow to relax our constraint that we must have a fixed number of
contiguous addresses allocated before we begin our program.

First, However, we will see how we can order lists without having to physically sort them.

Singly Linked Lists

s we noted above, we often have a list which may (or may not) be sorted on some
field, but which we frequently wish to display on some other field. Let’s assume that

we have a database which contains information on eight novelists (who just happen to be
taking a course in data structures because they find it fascinating). The list is sorted by ID
(Social Security Number, or ssn), but also contains the Writer’s Name (let’s call the field
name), and their scores on quiz 1 (let’s call it q1), and on quiz 2 (let’s call this field q2). In
tabular form, this might appear as:

Table 10.2.

Offset\Field ssn name q1 q2
0 123-45-6789 Christie, Agatha 67 78
1 234-56-7890 Tolkien, J.R.R. 100 72
2 345-67-8901 Eliot, T.S. 94 97
3 456-78-9012 Carroll, Lewis 88 62
4 567-89-0123 Joyce, James 59 74
5 678-90-1234 Albee, Edward 79 87
6 789-01-2345 Hesse, Herman 93 88
7 890-12-3456 Beckett, Samuel 60 64

If we wished to merely store the data in our program, our structure template, and the
variable which we could associate with the template, might appear as:

A

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.3

Each record, of course, would require 10 + 31 + 2 + 2 = 45-bytes of contiguous storage.
Since we wish to store eight (8) records, we would require a total of 45 * 8 = 360
contiguous bytes of storage.

As it stands right now, the database is sorted by Social Security Number (ssn). What if we
wished to print out the table alphabetically by name, however? We could, of course sort the
list, it which case it would be stored as:

Table 10.3.

Record/Offset ssn name q1 q2
0 678-90-1234 Albee, Edward 79 87
1 890-12-3456 Beckett, Samuel 60 64
2 456-78-9012 Carroll, Lewis 88 62
3 123-45-6789 Christie, Agatha 67 78
4 345-67-8901 Eliot, T.S. 94 97
5 789-01-2345 Hesse, Herman 93 88
6 567-89-0123 Joyce, James 59 74
7 234-56-7890 Tolkien, J.R.R. 100 72

Nothing, really. It’s just that that sometimes we might wish to display the names by ID,
sometimes by name. If we must sort (and resort) each time we wish to display by a
different key, well, we have already seen how much effort that can be, especially with long
lists. We can, however, display the list on either key, without having to sort, through the
use of pointers.

Since we know that each record in the table has a base address, we could add one
additional field which would be the pointer to the next record in the table. A simplistic way
of looking at this might be:

Table 10.4.

Record ssn name q1 q2 nextname

struct writers
{ char ssn[10], name[31];
 int q1, q2;
};
int main()
{ struct writers novelists[8] = { . . .};

C/C++ Code 10.1.

?���� What’s the problem???

?���� How???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.4

0 123-45-6789 Christie, Agatha 67 78 Eliot, T.S.
1 234-56-7890 Tolkien, J.R.R. 100 72 ** No One **
2 345-67-8901 Eliot, T.S. 94 97 Hesse, Herman
3 456-78-9012 Carroll, Lewis 88 62 Christie, Agatha
4 567-89-0123 Joyce, James 59 74 Tolkien, J.R.R.
5 678-90-1234 Albee, Edward 79 87 Beckett, Samuel
6 789-01-2345 Hesse, Herman 93 88 Joyce, J.
7 890-12-3456 Beckett, Samuel 60 64 Carroll, Lewis

Now, if we wished to display the names in this list, we would start with the 1st person on
the list (“Albee, E.”), display the record information, and then look at the name in the
nextname field (“Beckett, Samuel”), go to that record, and display the information
contained in it. Next, looking at the name in Beckett’s nextname field (“Carroll, Lewis”),
we would go to that record, and display the information contained in it. We would continue
the process until we got to Tolkien’s record. Since Tolkien’s nextname field points to no
one, we know we are the end of the list.

We would have to keep track of that information by storing the base address of the first
record (i.e., the address at which Albee’s information begins) in some separate location.
Let’s look at the situation in more applicable terms. Assume that the base address of the
database were 12450. In other words, the list might appear as given in Table 10.5.

Notice we can readily calculate the base address of any record in the database given the
base address of the database (12450) since we know that each record requires 45 bytes of
storage. The address of the 5th record (offset 4) must, for example, be:

12450 + 4 * 45 = 12450 + 180 = 12630

which, as we can see, it is. Now, if instead of adding a field which gives the name of the
next individual on the list, we add a pointer field which contains the address of the next
person on the list, we might see something like Figure 10.1.

?���� How do we know that Albee is the first person on the list???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.5

Table 10.5.

Address Record ssn name q1 q2
12450 0 123-45-6789 Christie, Agatha 67 78
12495 1 234-56-7890 Tolkien, J.R.R. 100 72
12540 2 345-67-8901 Eliot, T.S. 94 97
12585 3 456-78-9012 Carroll, Lewis 88 62
12630 4 567-89-0123 Joyce, James 59 74
12675 5 678-90-1234 Albee, Edward 79 87
12720 6 789-01-2345 Hesse, Herman 93 88
12765 7 890-12-3456 Beckett, Samuel 60 64

Figure 10.1.

Addres
s

Record ssn name q1 q2 next

12450 0 123-45-6789 Christie, Agatha 67 78 12548
12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
12548 2 345-67-8901 Eliot, T.S. 94 97 12744
12597 3 456-78-9012 Carroll, Lewis 88 62 12450
12646 4 567-89-0123 Joyce, James 59 74 12499
12695 5 678-90-1234 Albee, Edward 79 87 12793
12744 6 789-01-2345 Hesse, Herman 93 88 12646
12793 7 890-12-3456 Beckett, Samuel 60 64 12597

Yes, this is true. Each record now contains an extra field (a pointer field). It would be
necessary to modify our structure template so that it would appear as:

Which means that each record now requires an additional 4 bytes (the size of a pointer) of
contiguous storage in RAM, for a total of 49-bytes per record, and 8 * 49 = 392 bytes for
the array.

struct writers
{ char ssn[10], name[31];
 int q1, q2;
 struct writers * next;
 };

C/C++ Code 10.2.

?���� Wait!!! The base addresses of each of the records have changed!!!

?���� How can we define a structured data object which has a pointer to itself???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.6

Why not? A pointer is nothing more than a location in memory that contains an address and
points to a predefined data type. In this case, if we go to the address contained in field next,
we expect to find that the 1st 10 bytes contain a string, the 2nd 31 bytes also contain a string,
the next 2 bytes contain an integer, the following 2 bytes contain another integer, and the
remaining 4 bytes contain an address.

We need to store this information in a separate location (variable). In this case, we would
store the base address of the 1st record on the list (according to how we wish to order it).
The variable, of course, would be a pointer of data type struct writers. The declaration (in
function main) might appear as (we will eventually store the address of our 1st record in
variable first):

Notice that we do not initialize the pointer field next, since we do not know in advance
where they will be stored in RAM. If we were to look into RAM (again, assuming the base
address is 12450), we might see (Table 10.6):

We initialized the 1st record because of manner in which we will set up the linked list (stay
tuned, we will go over the procedure shortly). NULL means null pointer value (i.e.,
nothing). It is defined in a number of header files, one of which we must include. We will
use it to indicate that the record does not point to any other records (it is the end of the list),
as we did in Figure 10.1. when we had Tolkien pointing to NULL.

int main()
{ struct writers novelists[8] = { {“123456789”,”Christie, Agatha”, 67,78,NULL},
 {“234567890”,“Tolkien, J.R.R.”,100,72,},{“345678901”,”Eliot, T.S.”,94,97,},
 {“456789012”,”Carroll, Lewis”,88,62,},{“567890123”,”Joyce, James”,59,74,},
 {“678901234”,“Albee, Edward”,79,87,},{“789012345”,”Hesse, Herman”,93,88,},
 {“890123456”,”Beckett, Samuel”,60,64,} },
* first;

C Code 10.3.

?����
In the above example, how did we know that the first name (alphabetically) on

the list was Albee???

?����
But the 1st record on the list has the next field initialized to NULL. What is

NULL, anyway???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.7

Table 10.6.
Offset\Field ssn name q1 q2 next

 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498
0 “123456789\0” “Christie, Agatha\0” 67 78 NULL
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

1 “234567890\0” “Tolkien, J.R.R.\0” 100 72 ----
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

2 “345678901\0” “Eliot, T.S.\0” 94 97 ----
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

3 “456789012\0” “Carroll, Lewis\0” 88 62 ----
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

4 “567890123\0” “Joyce, James\0” 59 74 ----
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

5 “678901234\0” “Albee, Edward\0” 79 87 ----
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

6 “789012345\0” “Hesse, Herman\0” 93 88 ----
 12450-12459 12460-12490 12491-12492 12493-12494 12495-12498

7 “890123456\0” “Beckett, Samuel\0” 60 64 ----

Establishing a Linked List

et’s go over general procedure needed. Suppose that we already had the beginnings of
an ordered list. Suppose that we moved the first record from the unordered list and

made it the sole record on the ordered list. We now have two lists:

 Ordered List Figure 10.2.

First Address Recor
d

ssn name q1 q2 next

12450 12450 0 123-45-6789 Christie, Agatha 67 78 NULL

 Unordered List Table 10.7.

Address Record ssn name q1 q2 next
12499 1 234-56-7890 Tolkien, J.R.R. 100 72 -----
12548 2 345-67-8901 Eliot, T.S. 94 97 -----
12597 3 456-78-9012 Carroll, Lewis 88 62 -----
12646 4 567-89-0123 Joyce, James 59 74 -----
12695 5 678-90-1234 Albee, Edward 79 87 -----
12744 6 789-01-2345 Hesse, Herman 93 88 -----
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

L

?����
How do we go about setting up the list so we can display it in alphabetical

order???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.8

Notice that we keep track of the first record on the ordered list by placing its address in
pointer variable first. Since the record is also the only record in our ordered list, we know
that it must also be the last record on the list, and therefore it points to no one (i.e., the
address stored in pointer field next is NULL).

Now, the question becomes, How do we add records to the list? If we wished to add the
next record (“Tolkien, J.R.R.”) from the unordered list onto the ordered list, where should
it go?

When we compare the name “Tolkien, J.R.R.” with “Christie, Agatha”, we know that it
should follow it. We can readily add the name to the list by having “Christie, Agatha” point
to “Tolkien, J.R.R.”, and having “Tolkien, J.R.R.” point to no one (NULL) since it is now
the last record on the list. Our lists would now appear as:

 Ordered List Figure 10.3.

First Address Recor
d

ssn name q1 q2 next

12450 12450 0 123-45-6789 Christie, Agatha 67 78 12499
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL

 Unordered List Table 10.8.

Address Record Ssn name q1 q2 next
12548 2 345-67-8901 Eliot, T.S. 94 97 -----
12597 3 456-78-9012 Carroll, Lewis 88 62 -----
12646 4 567-89-0123 Joyce, James 59 74 -----
12695 5 678-90-1234 Albee, Edward 79 87 -----
12744 6 789-01-2345 Hesse, Herman 93 88 -----
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

Taking the next record from the unordered list, the question becomes Where does “Eliot,
T.S.” belong on the list? Looking at the ordered list, we see that it should be between
“Christie, Agatha” and “Tolkien, J.R.R.”.

Simply have “Christie, Agatha” point to “Eliot, T.S.” and have “Eliot, T.S.” point to
“Tolkien, J.R.R”. The respective lists would now appear as:

 Ordered List Figure 10.4.

first Address Recor
d

ssn name q1 q2 next

12450 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12499

?���� How do we insert it???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.9

 Unordered List Table 10.9.

Address Record Ssn name q1 q2 next
12597 3 456-78-9012 Carroll, Lewis 88 62 -----
12646 4 567-89-0123 Joyce, James 59 74 -----
12695 5 678-90-1234 Albee, Edward 79 87 -----
12744 6 789-01-2345 Hesse, Herman 93 88 -----
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

Continuing on, we now need to add the fourth record from the unordered list as the fourth
record on the ordered list. A quick inspection shows that the name “Carroll, Lewis” should
go before “Christie, Agatha”, making it the 1st name on the ordered list. Before we add it,
however, notice that we need to perform one other action:

We MUST place the base address of the new 1st record (i.e., “Carroll, Lewis”) in the
pointer variable first.

 Ordered List Figure 10.5.

First Address Recor
d

ssn name q1 q2 next

12597 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12499
 12597 3 456-78-9012 Carroll, Lewis 88 62 12450

 Unordered List Table 10.10.

Address Record ssn name q1 q2 next
12646 4 567-89-0123 Joyce, James 59 74 -----
12695 5 678-90-1234 Albee, Edward 79 87 -----
12744 6 789-01-2345 Hesse, Herman 93 88 -----
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

This last addition to the ordered list illustrates the last of three possibilities when adding
records:

1. A record can be placed at the beginning of the list, in which case we must have the
variable pointer first point to it, and have its next pointer point to the old first record

2. A record can be inserted between two existing records, in which case we have the
record which goes before it point to the new record, and have the new record point to
the record which the one preceding it previously pointed to.

3. A record can go at the end of the list, in which case we have previously last record
point to the new record, and have the new record point to no one (NULL).

Continuing on with the ordered list insertions:

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.10

Adding the 5th record:
 Ordered List Figure 10.6.
First Address Recor

d
ssn name q1 q2 next

12597 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12646
 12597 3 456-78-9012 Carroll, Lewis 88 62 12450
 12646 4 567-89-0123 Joyce, James 59 74 12499

 Unordered List Table 10.11.

Address Record ssn name q1 q2 next
12695 5 678-90-1234 Albee, Edward 79 87 -----
12744 6 789-01-2345 Hesse, Herman 93 88 -----
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

Note the next address change for “Eliot, T.S.”

Adding the 6th record:

 Ordered List Figure 10.7.

First Address Recor
d

ssn name q1 q2 next

12695 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12646
 12597 3 456-78-9012 Carroll, Lewis 88 62 12450
 12646 4 567-89-0123 Joyce, James 59 74 12499
 12695 5 678-90-1234 Albee, Edward 79 87 12597

 Unordered List Table 10.12.

Address Record Ssn name q1 q2 next
12744 6 789-01-2345 Hesse, Herman 93 88 -----
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

Note the change in variable first.

Adding the 7th record: Ordered List Figure 10.8.

First Address Recor
d

ssn name q1 q2 next

12695 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12744
 12597 3 456-78-9012 Carroll, Lewis 88 62 12450
 12646 4 567-89-0123 Joyce, James 59 74 12499
 12695 5 678-90-1234 Albee, Edward 79 87 12597
 12744 6 789-01-2345 Hesse, Herman 93 88 12646

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.11

 Unordered List Table 10.14.

Address Record Ssn name q1 q2 Next
12793 7 890-12-3456 Beckett, Samuel 60 64 -----

And adding the final record, we end up with the same ordered list that we saw in Figure
10.1.

Adding the final record: Ordered List Figure 10.9.

first Address Recor
d

Ssn name q1 q2 next

12695 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12744
 12597 3 456-78-9012 Carroll, Lewis 88 62 12450
 12646 4 567-89-0123 Joyce, James 59 74 12499
 12695 5 678-90-1234 Albee, Edward 79 87 12793
 12744 6 789-01-2345 Hesse, Herman 93 88 12646
 12793 7 890-12-3456 Beckett, Samuel 60 64 12597

See C Code 10.4.

Let’s follow the code line-by-line (after initialization of the array, which we already
discussed):
The line after the array initialization: struct writers *first = novelists, *present, *previous;

Declares three pointer variables:

1. first, which we already know will point to the 1st record on the ordered list. As we
stated in our algorithm description, since we initially add the 1st record from the
unordered list onto the ordered list, we initialize the variable first with the base address
of our array (first = novelists).

2. present, which will hold the address of the record on the ordered list against which we
are comparing the name from the unordered list.

3. previous, which will hold the address of the previous record on the ordered list (i.e., the
record which points to the record against which we are comparing the name from the
unordered list).

?���� What about the C Code necessary to link the list???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.12

 #include <string.h> // for strcmp
 struct writers // Our structure template
 { char ssn[10], name[31];
 int q1, q2;
 struct writers * next; };

 int main()
 { struct writers novelists[8] = { {“123456789”,”Christie, Agatha”, 67,78,NULL},
 {“234567890”,“Tolkien, J.R.R.”,100,72,},{“345678901”,”Eliot, T.S.”,94,97,},
 {“456789012”,”Carroll, Lewis”,88,62,},{“567890123”,”Joyce, James”,59,74,},
 {“678901234”,“Albee, Edward”,79,87,},{“789012345”,”Hesse, Herman”,93,88,},
 {“890123456”,”Beckett, Samuel”,60,64,} };
 struct writers *first = novelists, *present, *previous;
 int recno;
 for (recno = 1; recno < 8; recno++)
 { present = first; // start with 1st record on list

 // Is the new record name larger AND are there additional records?

 while ((strcmp(novelists[recno].name, present->name)>0) && (present->next != NULL))
 { previous = present; // old record now previous
 present = present->next; } // Then get the next record

 // Why are we out of the loop? Was the new < old record?

 if (strcmp(novelists[recno].name, present->name) < 0)
 { if (present == first)
 first = &novelists[recno]; // reset first pointer
 else
 previous->next = &novelists[recno]; // prev -> new
 novelists[recno].next = present; // new -> old
 }
 else // new > old
 { if (present->next == NULL)
 novelists[recno].next = NULL; // new -> NULL
 else
 novelists[recno].next = present->next; // new-> old
 present->next = &novelists[recno]; // old -> new
 }
 }
 return 0;
 }

C Code 10.4.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.13

There is also one integer variable: int recno; which will hold the offset of the unordered
array. In other words, it will indicate the record in the unordered array which we are trying
to place into the ordered array.

Starting with our loop:

for (recno = 1; recno < 8; recno++)
{ present = first; // place the address of the first record in pointer present.

Note that we start with the 2nd record on the unordered list (recno = 1). As we saw in
Figure 10.2. and Table 10.7., We already have 1 record (“Christie, Agatha”) on the ordered
list. The for loop will take each unlinked record add it to the list.

Our inner (while) loop will be used for inserting the new records in their correct position
on the loop:

while ((strcmp(novelists[recno].name, present->name)>0) && (present->next != NULL))

We will compare the unlinked record with every record on the linked list until:

1. The name field of the unlinked record is greater than the name field of the record in the

linked list we are comparing the record with, and
2. We are not at the end of the linked list.

If BOTH conditions are met:

 { previous = present; // Store the address of the record we were comparing
 present = present->next; } // Then get the next record

If we have to insert a record between two records we now have the addresses of both the
records.

If the name field in the unlinked list is greater than the name on the linked list that we are
comparing it to: if (strcmp(novelists[recno].name, present->name) < 0)

That means that we must insert the new (unlinked) before the record on the linked list that
we are comparing it to. There are two possibilities:

1. The record on the linked list was the first record, meaning we must make the new
record the first record on the linked list:

{ if (present == first)
 first = &novelists[recno]; // reset first pointer

2. The (linked) record which previously pointed to the (linked) record must be reset so
that it points to the new (unlinked) record:

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.14

 else
 previous->next = &novelists[recno]; // previous contains the new record’s
address

regardless of which of the two possibilities occurred, we must next set the new record’s
next pointer field to point to the record we were comparing it with:

 novelists[recno].next = present; }

If the new (unlinked) record has a name field which is greater than the name field of the
record on the linked, then there are again two possibilities:

1. The record on the linked list was the last record, which means that the new record must
become the last record on the list:

if (present->next == NULL)
 novelists[recno].next = NULL; // the new record points to NULL

2. The new record must point to the record which the record on the linked list was pointing
to:

 else
 novelists[recno].next = present->next;

Again, regardless of possibility, the linked record must point to the new record:

 present->next = &novelists[recno];

The procedure continues until all of the unlinked records have been placed on the linked
list.

Maintaining a Linked List

ctually, it is considerably less. We do not have to physically move any of the records.
Maintaining the list is also considerably easier. To add a record to into the linked list,

we simply follow the procedure above. To remove a record from the list, we simply
remove the pointers to it (making sure that whatever it points to can still be accessed). For
example, suppose we wished to remove “Eliot, T.S.” from our list. The list would appear
as:

A

?���� This seems like as much effort as sorting would be!!!

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.15

 Figure 10.10.

first Address Recor
d

ssn name q1 q2 next

12695 12450 0 123-45-6789 Christie, Agatha 67 78 12548
 12499 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL
 12548 2 345-67-8901 Eliot, T.S. 94 97 12744
 12597 3 456-78-9012 Carroll, Lewis 88 62 12450
 12646 4 567-89-0123 Joyce, James 59 74 12499
 12695 5 678-90-1234 Albee, Edward 79 87 12793
 12744 6 789-01-2345 Hesse, Herman 93 88 12646
 12793 7 890-12-3456 Beckett, Samuel 60 64 12597

Notice that there are no links to “Eliot, T.S.”. “Christie, Agatha” now points to “Hesse,
Herman”.

Yes, but we can not access it through our linked list (we still can access it through our
offset, however). If we had a new record which we wished to add onto the list, we could
write over Eliot’s information (although chances are that the list would no longer be sorted
by ssn). This problem is something we will overcome when we discuss dynamic memory
allocation.

There is another advantage to linked lists, namely, we can order the list on multiple keys
(without sorting). For example, if we also wished to link the list on quiz scores, as well as
alphabetically, we might set up our record structure as:

And the ordered list (in ascending order) would appear as:
Table 10.11.

Address Recor
d

ssn name q1 q2 next quiz1 quiz2

12450 0 123-45-6789 Christie, Agatha 67 78 12564 12735 12735
12507 1 234-56-7890 Tolkien, J.R.R. 100 72 NULL NULL 12678
12564 2 345-67-8901 Eliot, T.S. 94 97 12792 12507 NULL
12621 3 456-78-9012 Carroll, Lewis 88 62 12450 12792 12849
12678 4 567-89-0123 Joyce, James 59 74 12507 12849 12450
12735 5 678-90-1234 Albee, Edward 79 87 12849 12621 12792
12792 6 789-01-2345 Hesse, Herman 93 88 12678 12564 12564
12849 7 890-12-3456 Beckett, Samuel 60 64 12621 12450 12507

struct writers
{ char ssn[10], name[31];
 int q1, q2;
 struct writers * next, * quiz1, * quiz2;
 };

C/C++ Code 10.5.

?���� But all of the information about “Eliot, T.S.” is still there!!!

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.16

Notice that since we have added two additional pointer fields, each record now contains:

10 + 31 + 2 + 2 + 4 + 4 + 4 = 57 bytes.

Notice also that we would have to store the 1st record addresses in separate variables, as we
did when we stored the address 12685 (the base address for “Albee, Edward”) in variable
first. Our declaration might appear as:

Where, after the linkages were made, pointer firstquiz1 would contain the address 12678
and pointer firstquiz2 would contain the address 12621. Notice also that our initialization
allows for the additional pointer fields (of which only the first record has been initialized).

Let’s try and find the name “Joyce, James” on the list. Starting with the first record on the
list (“Albee, Edward”, whose address is store in our pointer variable first), we would check
to see if the record we were pointing to contained “Joyce, James” in the name field. If it
did, we found it. If it didn’t, AND the name we were searching for was greater than the
name found at that address, we would get the address contained in the next field and repeat
the process. If, for example, we were looking for the “Dostoyevski, Feodor”, and we were
comparing it with “Eliot, T.S.”, we would know that it wasn’t on the list because we
should have found it by then. If we haven’t found a match, and the address in the next field
is NULL, we also know that the name is not on the list.

The relevant section of c code necessary (allowing the user to enter in the name to search
for) might appear as:

int main()
{ struct writers novelists[8] = { {“123456789”,”Christie, Agatha”, 67,78,NULL,NULL,NULL},
 {“234567890”,“Tolkien, J.R.R.”,100,72,,,},{“345678901”,”Eliot, T.S.”,94,97,,,},
 {“456789012”,”Carroll, Lewis”,88,62,,,},{“567890123”,”Joyce, James”,59,74,,,},
 {“678901234”,“Albee, Edward”,79,87,,,},{“789012345”,”Hesse, Herman”,93,88,,,},
 {“890123456”,”Beckett, Samuel”,60,64,,,} },
* first; * firstquiz1, * firstquiz2;

C/C++ Code 10.6.

struct writers * present = first;
char searchname[31];
gets(searchname);
while ((strcmp(searchname, present->name) < 0) && (present->next != NULL))
 present = present->next;
if (strcmp(searchname, present->name) == 0)
 printf(“The name %s was found at address %p\n”, searchname, present);
else
 printf(“The name is not on the list\n”);

C/C++ Code 10.7.

?���� How would we go about finding a record on the linked list???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.17

Notice that one advantage of searching a linked list, as opposed to searching a list which is
not ordered in any fashion, is that we do not have to go to the end of the list before finding
out that a record is not on the list. Because the list is ordered, we know that we have gone
‘too far’ if we have passed the point where we should have found an element.

There are a few, especially given the manner in which we set up our linked list here (i.e., as
a fixed number of contiguous bytes of RAM).

1. Additional RAM is required for the pointer fields and for the pointers to the beginning

of the list.

2. The list can only be searched in a sequential fashion, unless we make modifications, or
add other structures.

No, we can’t do a binary search, not directly at any rate, although we can come close using
binary trees, as we shall see in a later chapter. We can, however, speed up the process.

Doubly Linked Lists

 doubly linked list implies that the list is linked in both directions, or in ascending
order as well as in descending order.

Suppose we were looking for the name “Albee, Edward” on our list. We would expect to
find it near the beginning of the list. Suppose however, that we were looking for the name
“Zola, Emile” (Which is not on the list, but could be). Where would we expect to find the
record? The way we presently have the list set up, we would have to start at the beginning
of the list and search until the end.

Consider the following structure template and declaration (Code 10.8):

A

?���� What are the disadvantages of linked lists???

?���� How can we improve the search??? Can we do a binary search???

?���� How???

?���� How is that an advantage???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.18

The doubly linked list might appear as:

Figure 10.12.
next previous

Address ssn name q1 q2 next previous
12450 123-45-6789 Christie, Agatha 67 78 12556 12609
12503 234-56-7890 Tolkien, J.R.R. 100 72 NULL 12662
12556 345-67-8901 Eliot, T.S. 94 97 12768 12450
12609 456-78-9012 Carroll, Lewis 88 62 12450 12821
12662 567-89-0123 Joyce, James 59 74 12503 12768
12715 678-90-1234 Albee, Edward 79 87 12821 NULL
12768 789-01-2345 Hesse, Herman 93 88 12662 12556
12821 890-12-3456 Beckett, Samuel 60 64 12609 12715

Where each record requires 10 + 31 + 2 + 2 + 4 + 4 = 53 bytes of storage, and variable first
will contain the address 12715 and variable last will contain the address 12503.

With our doubly linked list, we might search for records whose name field starts with a
character less than ‘M’ starting at the beginning of the list. We might begin our search for
records whose name field begins with the letter ‘M’ or greater by starting at the end of the
list.

This may seem like a great deal of work for eight records, but imagine a list with 100,000
records. While we do require 4 additional bytes of storage per record, and initial list estab-
lishment requires some effort, it is considerably less effort than sorting, relatively easy to
maintain, and considerably faster to find a record.

Still, if we do have a list of 100,000 records, and we are searching for “Maugham,
Somerset”, for example, we might still require 50,000 comparisons.

struct writers
{ char ssn[10], name[31];
 int q1, q2;
 struct writers * next, * previous;
 };

int main()
{ struct writers novelists[8] = { • • • }, * first, * last;

C/C++ Code 10.8.

?���� Can we refine the search???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.19

Leveled Lists

he idea behind leveled list follows the simple concept we followed for searching and
sorting:

The shorter the list, the faster it is to sort and search it.

If we had a list of 1,000 elements on a linked list, we know that on average, it would take
500 comparisons to find an element (assuming the element was on the list). What if we
broke up the entire list into 5 (ordered) sublists, each list containing 100 elements. If we
knew which sublist an element was on, we would only have to search that sublist, meaning
that, on average, we could find that element with only 50 comparisons (10% the number of
comparisons needed for the full list).

That is the idea behind a leveled list. If we have a linked list of 1,000 elements, we might
determine where the 100th element (on the ordered list) is, the 200th, the 300th, and so forth.
We would then store the addresses of those elements (in order) in a different array, and
begin our search by first going through the array until we had a fairly good idea of where
we should begin our search on the linked list.

Let’s assume that our (unsorted) array (novelists) of structured objects (struct writers)
contained 1,000 records, and that we have already linked the list. The list ranges (alphabet-
ically) from “Abelard, Peter” through “Zola, Emile”. Let’s also assume that we have
created an additional array of structured data objects called index. The structure template
(call it struct writerindex) and the declaration for the array might appear as:

Where each record in the array index will require 31 + 4 = 35 bytes of contiguous storage,
or a total of 350 bytes of contiguous storage.

T

struct writerindex
{ char name[31];
 struct writerindex * address;
 };

int main()
{ struct writerindex index[10];

C Code 10.9.

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.20

If we were to go through our linked list (in array
novelists), we might find that the 100th name
(alphabetically, not physically) was “Burns,
Robert”, the 200th was “Dickenson, E.”, the 300th
was “Fielding, Henry”, and so forth, all the way to
the last name on the list (the 1,000th), “Zola,
Emile”. Let’s take each of these names, along with
the addresses at which they can be found, and store
them in our array index. Each name in the index
array is the last name on our sublist of 100 names.
In other words, there are 100 names after “Oates,
Carol” and between (and including) “Rilke,
Marie”.

Suppose that we were now looking for “Shakespeare, William”. We would start by
comparing “Shakespeare, William” with every name on the index list until we either found
it (in which case we can go directly to it), or came across a name in the index which was
greater than the name “Shakespeare, William”. In this case, we would when we
encountered the name “Twain, Mark”. We now know that if Shakespeare is on the list, he
must be found (on the linked list) after “Rilke, Marie” (and before “Twain, Mark”).

Now all we have to do is go to the address at which we will find “Rilke, Marie” (34304)
and work our way through the linked list until we either find “Shakespeare, William”, or
run across a name which is greater (in which case we know he is not on the list).

The procedure is still basically the same. As soon as we came across a name greater than
“Aristophanes”, we would start with the record before it. However, since there is no record
before “Burns, Robert”, we would go to the first record on the linked list (whose address
we have stored in our variable first).

Using this ‘leveled list’ approach as we have laid it out, it would take, on average, 5
comparisons in index, and 50 comparisons in the linked list, for a total of 55 comparisons
(assuming the name were on the list). This is a considerable savings over the 500
comparisons it would take if we didn’t have our first list.

 index Table 10.12.

Record name address
0 Burns Robert 40233
1 Dickenson, E. 55227
2 Fielding, Henry 33030
3 Hardy, Thomas 27101
4 Keats, John 61058
5 Millay, Edna 16958
6 Oates, Carol 17595
7 Rilke, Marie 34304
8 Twain, Mark 13381
9 Zola, Emile 42928

?���� What if we were looking for a name that came before “Burns, Robert”, on the
list, say, “Aristophanes”Can we refine the search???

?���� Since the array index is sorted, couldn’t we perform a binary search on it???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.21

Yes and no. A binary search assumes that the element we are looking for is on a list, or it
doesn’t exist at all. In our example, only 10 of the 1,000 names available are on the 1st list.
We could modify our binary search to account for manner in which the list is set up, but the
code then becomes more complex. Aside from that, remember that we wish to keep the list
short, so that searching it is quick.

Yes, it would take an average of 500 comparisons, plus additional 50 comparisons in the
linked list, for 550 total comparisons. This is obviously unacceptable. We could adjust the
interval between the names represented on the linked list, but that probably wouldn’t help
much. What we could do, however, is apply the same procedure and break-up our index
array into sublists. We would now have two indices (call them index1 and index2). To find
a novelist, we would first start with index1, then go to index2, and then go to our linked
list.

This approach is called a 2-leveled list.

This time, let’s assume that we are trying to find the name “Kipling, Rudyard” on the
linked list. We would start with index1 and continue through the list until we encountered a
name which was greater (in terms of the ASCII characters). When we do get to “Lazarus,
Emma”, we go to the address associated with it (19950). Starting with the name we find
there (“Hellman, Lilian”), we continue until we again find a name greater than “Kipling,
Rudyard” (let’s assume that we encounter the name “Lamb, Charles”). We then go to the
address (on the complete linked list) associated with “Lamb, Charles” in index2, where we
might find the name “Kant, Emmanuel”. We then continue comparing names until we

 index1 index2 Figure 10.13.

Recor
d

name Address ADDR Record name address

0 Butler, Sam 5950 5950 0 Adams, Jane 460233
1 Dickens,

Charles
9450 • • • • • • • • •

2 Forster, E.M. 12950 9450 100 Butler, Sam 233030
3 Hellman, Lillian 16450 9485 101 Butler, William 107101
4 Lazarus, Emma 19950 • • • • • • • • •
5 Nash, Ogden 23450 19950 400 Hellman, Lillian 196958
6 Orwell, George 26950 • • • • • • • • •
7 Renoir, Jean 30450 37450 900 Thoreau, Henry 384304
8 Thoreau, Henry 33950 • • • • • • • • •
9 Zola, Emile 37450 40915 999 Zola, Emile 422928

?����
But, if there were 100,000 names on the list, then the index array we used would

contain 1,000 names, and we would have to make an average of 500
comparisons just on that list!!!

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.22

either find “Kipling, Rudyard”, or find a name alphabetically greater (in which case,
“Kipling, Rudyard” is not on the list).

Suppose we were looking for “Orwell, George”. Since he is in index1, couldn’t we go to
him directly?

Yes, but we would have to include an additional pointer field. Since the chances of an
individual being on index1 are only 10/100,000 = 1 in 10,000, it doesn’t seem worth it.
Similarly, the chances of an individual being in index2 are 1,000/100,000 or 1 in 100, it
doesn’t seem worth the extra RAM required.

We know that if we only had a linked list of 100,000 names, it would take an average of
50,000 comparisons. It we had the linked list and only index2 (which contained 1,000
names), it would take an average of 550 comparisons. With the two indices, it would take
an average of 5 + 50 + 50 = 105 comparisons.

We could probably improve the average number of comparisons necessary by increasing
the number of names on index1 (for example, to 33) which would decrease the number of
names in an the interval on index2 (to about 30), which means that the average number of
comparisons needed would be about 16 + 15 + 50 = 81. The optimal number of names
which we should include in both index1 and index2 can be mathematically determined,
although we won’t discuss that here.

We could also have 3-leveled lists (or 4-leveled, 5-leveled, etc.) which might improve the
number of comparisons (or might not; again we could mathematically determine the
number of lists we should use for a given number of elements).

Yes, there are always trade-offs involved. Adding leveled lists increases the amount of
RAM required. The searching programs required (which we will not reproduce here)
become more complex and time consuming. Further, both of these problems are
compounded when we start increasing the number of leveled lists involved.

?���� How much of improvement is this 2-leveled list approach???

?���� Are there any disadvantages???

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.23

Summary

Linked lists offer a number of advantages over simple lists:

1. We can order elements without having to physically sort them
2. We can order on any field, or any number of fields
3. We can establish and maintain linked lists without extreme effort
4. We can develop search procedures on linked lists which can significantly reduce the

number of comparisons needed to find an element.

As with all of the new data structures we have introduced, there are trade-offs involved.
Linked lists do increase storage requirements because we must add pointer fields.
Additional storage, and more complex programming, is required if we wish to refine our
search procedures through the use of leveled lists. Nonetheless, the advantages of using
linked lists far outweigh the disadvantages.

We will continue using the concepts underlying structured data objects and linking them
through the use of pointers. Essentially, they will fill the foundations of all of the other data
structures we will look at through the rest of this text. First, however, we must loosen two
major constraints we have been working under. Namely, we must develop data structures
which are NOT of a fixed size (such as an array) and do NOT require contiguous blocks of
memory. We will dispose of these constraints in the following chapter on dynamic memory
allocation.

Chapter Terminology: Be able to fully describe these terms

2-Level lists NULL Pointers
3-Level Lists Pointer Fields
Advantages of Linked Lists Pointers to the first record
Deleting Records from a List Pointers to the last record
Disadvantages of Linked Lists Searching a linked List
Doubly Linked Lists Singly Linked Lists
Inserting Records into a list Sublists
Leveled Lists

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.24

Review Questions

1. List all the advantages and disadvantages of singly linked list. Of doubly linked lists.

2. I have five books which I have listed in a spreadsheet as follows:

Title Author Year Written Value

Anna Karenina Tolstoy 1876 125
Great Gadsby, The Fitgerald, F.S. 1932 50
Guliver’s Travels Swift 1726 250
Rhetoric Aristotle 329 BC 1500
Vanity Fair Thackeray 1847 750

a. Set up the needed structure template (call it struct booktemplate) to link the list

alphabetically by author (make up string lengths as you see fit).

b. Assign the variable book to the structure template. Show the declarations
necessary.

c. Assume that the base address of the variable book is 9000. Set up a table which
would show all of the linkages.

d. Now link the list by year written and value (maintaining the linkages established
above). Show the modified struct booktemplate. Assuming that the base address
of books remains 9000, show (in tabular form) how the linkages would appear.

3. Given the following structured object and declarations:

struct studentinfo { char ssn[11], name[28], address[30];
 int age, IQ;
 float gpa, balance;
 struct studentinfo *next, *previous; };

void main()
{ struct studentinfo student[5] = {{“123457689”, “Gates, W.”,”99 Microsoft
 Ln”,38,108,3.87,4500,NULL,NULL},{“234567890”, “Ford, H.”,“17 Michigan
 Ave”, 125,115,3.10,250.00,,}, {“345678901”,“Trump, D.”,”1 Trump
 Towers”,55,110,1.86,500,,},{ “456789012”, “Astor, J.J.”, ”20 Wall
Street”,76,
 100,2.76, 1000,,},{ “567890123”,“Carnegie, A.”,”100 Steel St”, 81, 79,
2.25,0,,};

 struct studentinfo * first, * last;

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.25

Using a linked list, I have ordered the names alphabetically (in ascending order). Field
next will hold the address of the next person (alphabetically) on the list. Field previous
will hold the address of the previous person (alphabetically) on the list. Variable first
will point to the first person (alphabetically) on the list, and variable last will point to
the last person (alphabetically) on the list.

When I entered the command: printf (“%lu\n”, &student[2]);
I received the output: 7828

For each of the following printf statements, show the output which would be obtained:

a. printf(“%lu\n”,first);
b. printf(“%lu\n”,last);
c. printf(“%s\n”, first->address);
d. printf(“%lu\n”,&student[1].balance);
e. printf(“%f5.2\n”,student[3].next->balance);
f. printf(“%lu\n”, ++first);
g. printf(“%d\n”,last->previous->age);

4. Discuss all of the advantages and disadvantages of using leveled lists.

Review Question Answers (NOTE: checking the answers before you have
tried to answer the questions doesn’t help you at all)

1. List all the advantages and disadvantages of singly linked list. Of doubly linked

lists.

Singly Linked List Advantages Singly Linked List Diadvantages
Allow for display in order w/o sorting Additional RAM due to pointer field
Can order on any field Additional programming needed
Easy to establish and maintain
Need not search until list end if an
 Element is not on the list

Doubly Linked List Advantages Doubly Linked List Diadvantages
In addition to the above: Additional RAM due to extra pointer field
 Can search & display from either end Additional programming needed

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.26

2a. The structure template would appear as:

struct booktemplate { char title[30], author[25];
 int yrwritten, value;
 struct booktemplate * next; };

Note: yrwritten could be stored as a character string. I have chosen to store it as a
(signed) integer (where B.C. dates will be stored as negative values). The field
value could also be stored as a real (float).

The manner in which I have set up the template requires:

30 + 25 + 2 + 2 + 4 = 63 bytes of storage per record, or 5 * 63 = 315 bytes of
contiguous RAM allocation

2.b. The declaration assigning it to variable book would be:

void main()
{ struct booktemplate book[5] ={{“Anna Karenina”,”Tolstoy”,1876,125,NULL},

 Great Gadsby, The”, Fitzgerald, F.S.”,1932,50,}, {“Guliver’s Travels”, ”Swift”,
 726,250,},{“Rhetoric”,”Aristotle”,-329,1500,},{“Vanity Fair”,”Thackeray”,
 1847,750,}}, * first;

Note: Pointer variable first (which holds the address to the first name on the list)

should be declared.

2.c. The lay-out would appear as:

first Rec. Addr. title author yrwritten value next
9189 0 9000 Anna Karenina Tolstoy 1876 125 NULL
 1 9063 Great Gadsby, The Fitgerald, F.S. 1932 50 9126
 2 9126 Guliver’s Travels Swift 1726 250 9252
 3 9189 Rhetoric Aristotle -329 1500 9063
 4 9252 Vanity Fair Thackeray 1847 750 9000

2.d. The new template and declarations would be:

struct booktemplate { char title[30], author[25];
 int yrwritten, value;
 struct booktemplate * nextname, * nextyrwritten, *
nextvalue};
void main()
{ struct booktemplate book[5] ={{}}, * firstname, * firstyrwritten, * firstvalue;

and each record would require 8 more bytes of storage, or 71 bytes per record. The
layout might appear as:

Kirs and Pflughoeft Abstract Data Types in c for Non-Computer Science Majors

Linked Lists Page 10.27

Rec. Addr. title author yrwritten value nextn nexty nextv
0 9000 Anna Karenina Tolstoy 1876 125 NULL 9071 9142
1 9071 Great Gadsby, The Fitgerald, F.S. 1932 50 9126 NULL 9000
2 9142 Guliver’s Travels Swift 1726 250 9252 9284 9284
3 9213 Rhetoric Aristotle -329 1500 9063 9142 NULL
4 9284 Vanity Fair Thackeray 1847 750 9000 9000 9213

 And the contents of each of the first pointers would be:

firstname firstyrwritten firstvalue
9213 9213 9071

3. Given the record structure and that &student[2] is 7828:

Each record requires: 11 + 28 + 30 + 2 + 2 + 4 + 4 + 4 + 4 = 89 bytes of storage.
The base address of the array would be: 7828 – 2 * 89 = 7828 – 178 = 7650

The linked list would thus appear as:

Addr ssn name address age IQ gpa balance next prev
7650 123456789 Gates, W. 99 Microsoft Ln 38 108 3.87 4500.00 7828 7739
7739 234567890 Ford, H. 17 Michigan Ave 125 115 3.10 250.00 7650 8006
7828 345678901 Trump, D, 1 Trump Tower 55 110 1.86 500.00 NULL 7650
7917 456789012 Astor, J.J. 20 Wall Street 76 100 2.76 1000.00 8006 NULL
8006 567890123 Carnegie, A. 100 Steel St. 81 79 2.25 0.00 7739 7917

And the contents of the variables first and last are:
Therefore:

 Yields:
a. printf(“%lu\n”,first); 7917
b. printf(“%lu\n”,last); 7828
c. printf(“%s\n”, first->address); 20 Wall St.
d. printf(“%lu\n”,&student[1].balance); 7739 + 11 + 28 + 30 + 2 + 2 + 4 = 7816
e. printf(“%f5.2\n”,student[3].next->balance); 8006 -> 0.00 (Carnegie’s Balance)
f. printf(“%lu\n”, ++first); Prefix notation: 7917 + 89 = 8006
g. printf(“%d\n”,last->previous->age); 7828 -> 7650 -> 38 (Gate’s age)

4. Discuss all of the advantages and disadvantages of using leveled lists.

Advantages: • Search times decrease significantly
 • As the number of leveled lists is increased, search times decrease

accordingly (up to a point).

Disadvantages: • The amount of RAM required increases
 • The searching programs required are more complex
 • Both problems are compounded when additional levels are

added

first last
7917 7828

