How would we apply this formula in decimal and binary? How many digits would it take to represent  the value 123 in decimal and binary?

 

   Decimal:

 

     Binary:

 

   I  =

  10n

   I  =

  2n

log (I) =

  n * log (10)

log (I) =

  n * log (2)

=

  n * 1

=

  n * 0.30103

=

  n

n =

  log(I)/0.30103

   n =

  log (I)

  

  

If we wished to represent the value 123, In Decimal and Binary, this would mean:

  Decimal:

 

     Binary:

 

   123  =

  10n

  123 =

  2n

log (123) =

  n * log (10)

log (123) =

  n * log (2)

=

  n * 1

=

  n * 0.30103

=

  n

n =

  log(123)/0.30103

   n =

  log (123)

n =

  2.0899/0.30103

=

  2.0899

=

  6.9425

OR, you would need 2.0899 decimal digits or 6.9425 binary digits